whoami02 commited on
Commit
7197c49
·
verified ·
1 Parent(s): 138dfcf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -22
app.py CHANGED
@@ -1,6 +1,5 @@
1
  import gradio as gr
2
  import re
3
- import os
4
  import numpy as np
5
  from langchain_community.vectorstores import Chroma
6
  from langchain_community.embeddings import HuggingFaceBgeEmbeddings
@@ -23,32 +22,34 @@ def similarity_search2(vectordb, query, k, unique="True"):
23
  return str(np.unique(np.array(temp)))[1:-1]
24
  else:
25
  return str(np.array(temp))[1:-1]
26
-
27
  with gr.Blocks() as demo:
28
  gr.Markdown(
29
  """
30
  <h2> <center> Query Retrieval </center> </h2>
31
  """)
32
- query = gr.Textbox(placeholder="your query", label="Query")
33
- k = gr.Slider(10,1000,5, label="number of samples to check")
34
- unique = gr.Radio(["True", "False"], label="Return Unique values")
35
-
36
  with gr.Row():
37
- btn = gr.Button("Submit")
38
-
39
- def mmt_query(query, k, unique):
40
- model_id = "BAAI/bge-large-en-v1.5"
41
- model_kwargs = {"device": "cpu"}
42
- embedding = HuggingFaceBgeEmbeddings(
43
- model_name = model_id,
44
- model_kwargs = model_kwargs,
45
- encode_kwargs = {'normalize_embeddings':True}
46
- )
47
- persist_directory = r"VectorDB\db_book_mmt"
48
- vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding)
49
- return similarity_search2(vectordb, query, k, unique)
50
-
51
- output = gr.Textbox()
52
- btn.click(mmt_query, [query, k, unique], output)
 
 
 
 
53
 
 
 
54
  demo.launch()
 
1
  import gradio as gr
2
  import re
 
3
  import numpy as np
4
  from langchain_community.vectorstores import Chroma
5
  from langchain_community.embeddings import HuggingFaceBgeEmbeddings
 
22
  return str(np.unique(np.array(temp)))[1:-1]
23
  else:
24
  return str(np.array(temp))[1:-1]
25
+
26
  with gr.Blocks() as demo:
27
  gr.Markdown(
28
  """
29
  <h2> <center> Query Retrieval </center> </h2>
30
  """)
 
 
 
 
31
  with gr.Row():
32
+ with gr.Column():
33
+ query = gr.Textbox(placeholder="your query", label="Query")
34
+ k = gr.Slider(10,1000,5, label="number of samples to check")
35
+ unique = gr.Radio(["True", "False"], label="Return Unique values")
36
+ with gr.Row():
37
+ btn = gr.Button("Submit")
38
+ def mmt_query(query, k, unique):
39
+ model_id = "BAAI/bge-large-en-v1.5"
40
+ model_kwargs = {"device": "cpu"}
41
+ embedding = HuggingFaceBgeEmbeddings(
42
+ model_name = model_id,
43
+ model_kwargs = model_kwargs,
44
+ encode_kwargs = {'normalize_embeddings':True}
45
+ )
46
+ persist_directory = r"VectorDB\db_book_mmt"
47
+ vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding)
48
+ return similarity_search2(vectordb, query, k, unique)
49
+ with gr.Column():
50
+ output = gr.Textbox(scale=10, label="Output")
51
+ btn.click(mmt_query, [query, k, unique], output)
52
 
53
+ # interface = gr.Interface(fn=auto_eda, inputs="dataframe", outputs="json")
54
+ # demo.queue()
55
  demo.launch()