Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
import re
|
3 |
-
import os
|
4 |
import numpy as np
|
5 |
from langchain_community.vectorstores import Chroma
|
6 |
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
@@ -23,32 +22,34 @@ def similarity_search2(vectordb, query, k, unique="True"):
|
|
23 |
return str(np.unique(np.array(temp)))[1:-1]
|
24 |
else:
|
25 |
return str(np.array(temp))[1:-1]
|
26 |
-
|
27 |
with gr.Blocks() as demo:
|
28 |
gr.Markdown(
|
29 |
"""
|
30 |
<h2> <center> Query Retrieval </center> </h2>
|
31 |
""")
|
32 |
-
query = gr.Textbox(placeholder="your query", label="Query")
|
33 |
-
k = gr.Slider(10,1000,5, label="number of samples to check")
|
34 |
-
unique = gr.Radio(["True", "False"], label="Return Unique values")
|
35 |
-
|
36 |
with gr.Row():
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
53 |
|
|
|
|
|
54 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import re
|
|
|
3 |
import numpy as np
|
4 |
from langchain_community.vectorstores import Chroma
|
5 |
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
|
|
22 |
return str(np.unique(np.array(temp)))[1:-1]
|
23 |
else:
|
24 |
return str(np.array(temp))[1:-1]
|
25 |
+
|
26 |
with gr.Blocks() as demo:
|
27 |
gr.Markdown(
|
28 |
"""
|
29 |
<h2> <center> Query Retrieval </center> </h2>
|
30 |
""")
|
|
|
|
|
|
|
|
|
31 |
with gr.Row():
|
32 |
+
with gr.Column():
|
33 |
+
query = gr.Textbox(placeholder="your query", label="Query")
|
34 |
+
k = gr.Slider(10,1000,5, label="number of samples to check")
|
35 |
+
unique = gr.Radio(["True", "False"], label="Return Unique values")
|
36 |
+
with gr.Row():
|
37 |
+
btn = gr.Button("Submit")
|
38 |
+
def mmt_query(query, k, unique):
|
39 |
+
model_id = "BAAI/bge-large-en-v1.5"
|
40 |
+
model_kwargs = {"device": "cpu"}
|
41 |
+
embedding = HuggingFaceBgeEmbeddings(
|
42 |
+
model_name = model_id,
|
43 |
+
model_kwargs = model_kwargs,
|
44 |
+
encode_kwargs = {'normalize_embeddings':True}
|
45 |
+
)
|
46 |
+
persist_directory = r"VectorDB\db_book_mmt"
|
47 |
+
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding)
|
48 |
+
return similarity_search2(vectordb, query, k, unique)
|
49 |
+
with gr.Column():
|
50 |
+
output = gr.Textbox(scale=10, label="Output")
|
51 |
+
btn.click(mmt_query, [query, k, unique], output)
|
52 |
|
53 |
+
# interface = gr.Interface(fn=auto_eda, inputs="dataframe", outputs="json")
|
54 |
+
# demo.queue()
|
55 |
demo.launch()
|