|
import os |
|
import math |
|
import re |
|
import ast |
|
import gradio as gr |
|
import numpy as np |
|
import pandas as pd |
|
from doctr.io import DocumentFile |
|
from doctr.models import ocr_predictor |
|
from PIL import Image, ImageDraw |
|
|
|
img_temp = "tp" |
|
sub_img_temp = "tp1" |
|
|
|
def load_model(): |
|
return ocr_predictor( |
|
det_arch='linknet_resnet18_rotation', |
|
reco_arch='crnn_vgg16_bn', |
|
detect_orientation=True, |
|
assume_straight_pages=False, |
|
pretrained=True, |
|
pretrained_backbone=True, |
|
export_as_straight_boxes=True, |
|
preserve_aspect_ratio=True, |
|
) |
|
|
|
def convert_coordinates(geometry, page_dim, i, j): |
|
len_x = page_dim[1] |
|
len_y = page_dim[0] |
|
(x_min, y_min) = geometry[0] |
|
(x_max, y_max) = geometry[1] |
|
x_min = (math.floor(x_min * len_x)) + i*len_x |
|
x_max = (math.ceil(x_max * len_x)) + i*len_x |
|
y_min = (math.floor(y_min * len_y)) + j*len_y |
|
y_max = (math.ceil(y_max * len_y)) + j*len_y |
|
return [x_min, x_max, y_min, y_max] |
|
|
|
def get_coordinates(output, x, y): |
|
page_dim = output['pages'][0]["dimensions"] |
|
raw_data = [] |
|
for obj1 in output['pages'][0]["blocks"]: |
|
for obj2 in obj1["lines"]: |
|
for obj3 in obj2["words"]: |
|
converted_coordinates = convert_coordinates(obj3["geometry"],page_dim, x, y) |
|
raw_data.append("{}: {}".format(converted_coordinates,obj3["value"])) |
|
return raw_data |
|
|
|
def get_vals(file_path, wh): |
|
model = load_model() |
|
Data, counter = [], 1 |
|
for i in range(wh): |
|
for j in range(wh): |
|
path = f"{file_path}/{counter}.jpg" |
|
temp_doc = DocumentFile.from_images(path) |
|
output = model(temp_doc).export() |
|
data = get_coordinates(output, i, j) |
|
counter += 1 |
|
Data.extend(data) |
|
return Data |
|
|
|
def clean_dir(path): |
|
files = os.listdir(path=path) |
|
return files |
|
|
|
|
|
|
|
def html_path(img, counter): |
|
img.save(f"{sub_img_temp}/{counter}.jpg") |
|
return f"<img src='/file={sub_img_temp}/{counter}.jpg'></img>" |
|
|
|
def create_box(l): |
|
return (l[0], l[2], l[1], l[3]) |
|
|
|
def process(filepath, regex, size=(1656,1170)): |
|
f1 = clean_dir(path=img_temp) |
|
f2 = clean_dir(path=sub_img_temp) |
|
return [f1, f2] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main(): |
|
|
|
demo = gr.Interface( |
|
fn=process, |
|
inputs=[gr.Image(type="filepath", interactive=True),gr.Dropdown(['Regex-1'])], |
|
|
|
outputs = "list", |
|
title="OCR" |
|
) |
|
demo.launch(debug=True, show_error=True) |
|
|
|
if __name__=="__main__": |
|
main() |