|
import os |
|
import math |
|
import re |
|
import ast |
|
import gradio as gr |
|
import numpy as np |
|
import pandas as pd |
|
from doctr.io import DocumentFile |
|
from doctr.models import ocr_predictor |
|
from PIL import Image, ImageDraw |
|
|
|
img_temp = "tp" |
|
sub_img_temp = "tp1" |
|
|
|
def load_model(): |
|
return ocr_predictor( |
|
det_arch='linknet_resnet18_rotation', |
|
reco_arch='crnn_vgg16_bn', |
|
detect_orientation=True, |
|
assume_straight_pages=False, |
|
pretrained=True, |
|
pretrained_backbone=True, |
|
export_as_straight_boxes=True, |
|
preserve_aspect_ratio=True, |
|
) |
|
|
|
def convert_coordinates(geometry, page_dim, i, j): |
|
len_x = page_dim[1] |
|
len_y = page_dim[0] |
|
(x_min, y_min) = geometry[0] |
|
(x_max, y_max) = geometry[1] |
|
x_min = (math.floor(x_min * len_x)) + i*len_x |
|
x_max = (math.ceil(x_max * len_x)) + i*len_x |
|
y_min = (math.floor(y_min * len_y)) + j*len_y |
|
y_max = (math.ceil(y_max * len_y)) + j*len_y |
|
return [x_min, x_max, y_min, y_max] |
|
|
|
def get_coordinates(output, x, y): |
|
page_dim = output['pages'][0]["dimensions"] |
|
raw_data = [] |
|
for obj1 in output['pages'][0]["blocks"]: |
|
for obj2 in obj1["lines"]: |
|
for obj3 in obj2["words"]: |
|
converted_coordinates = convert_coordinates(obj3["geometry"],page_dim, x, y) |
|
raw_data.append("{}: {}".format(converted_coordinates,obj3["value"])) |
|
return raw_data |
|
|
|
def get_vals(file_path, wh): |
|
model = load_model() |
|
Data, counter = [], 1 |
|
for i in range(wh): |
|
for j in range(wh): |
|
path = f"{file_path}/{counter}.jpg" |
|
temp_doc = DocumentFile.from_images(path) |
|
output = model(temp_doc).export() |
|
data = get_coordinates(output, i, j) |
|
counter += 1 |
|
Data.extend(data) |
|
return Data |
|
|
|
def clean_dir(path): |
|
files = os.listdir(path=path) |
|
|
|
for i in range(1,len(files)+1): |
|
os.remove(f"{path}/{i}.jpg") |
|
|
|
def html_path(img, counter): |
|
img.save(f"{sub_img_temp}/{counter}.jpg") |
|
return f"<img src='/file={sub_img_temp}/{counter}.jpg'></img>" |
|
|
|
def create_box(l): |
|
return (l[0], l[2], l[1], l[3]) |
|
|
|
def process(filepath, regex, size=(1656,1170)): |
|
clean_dir(path=img_temp) |
|
clean_dir(path=sub_img_temp) |
|
|
|
img = Image.open(filepath) |
|
(width, height), parts, counter, dimensions, im_, values = img.size, [], 0, [], [], [] |
|
for i in range(0, width, size[0]): |
|
for j in range(0, height, size[1]): |
|
counter += 1 |
|
box = (i, j, i+size[0], j+size[1]) |
|
img.crop(box).save(f"{img_temp}/{counter}.jpg") |
|
parts.append(img.crop(box)) |
|
temp= os.listdir(path=img_temp) |
|
if regex == 'Regex-1': |
|
pattern = re.compile(r"^\s\b\d+([\.,]\d+)?") |
|
else: |
|
pattern = re.compile(r"\d+") |
|
|
|
data = get_vals(img_temp, wh=math.floor(math.sqrt(len(temp)))) |
|
counter, idx = 1, [] |
|
for d in data: |
|
dimensions.append(ast.literal_eval(d.split(':')[0])) |
|
im_.append(html_path(img.crop(create_box(ast.literal_eval(d.split(':')[0]))), counter=counter)) |
|
values.append(d.split(':')[1]) |
|
counter += 1 |
|
metadata = pd.DataFrame(zip(dimensions, im_, values), columns=['Coordinates','Image','Value']) |
|
df = metadata[metadata['Value'].str.contains(pattern)] |
|
|
|
return df |
|
|
|
def main(): |
|
|
|
demo = gr.Interface( |
|
fn=process, |
|
inputs=[gr.Image(type="filepath", interactive=True),gr.Dropdown(['Regex-1'])], |
|
outputs=gr.DataFrame(wrap=True, datatype = ["str", "markdown", "str"], interactive=True), |
|
|
|
title="OCR", |
|
description="Issue with filesystem...not able to parse all files in the folders", |
|
) |
|
demo.launch(debug=True, show_error=True) |
|
|
|
if __name__=="__main__": |
|
main() |