|
import os |
|
import gradio as gr |
|
from langchain.document_loaders import OnlinePDFLoader |
|
from langchain.text_splitter import CharacterTextSplitter |
|
from langchain.chat_models import ChatAnthropic |
|
from langchain.prompts import ChatPromptTemplate |
|
|
|
|
|
os.environ['ANTHROPIC_API_KEY'] = os.getenv("ANTHROPIC_API_KEY") |
|
|
|
pdf_content = "" |
|
|
|
def load_pdf(pdf_doc): |
|
global pdf_content |
|
try: |
|
if pdf_doc is None: |
|
return "No PDF uploaded." |
|
|
|
|
|
loader = OnlinePDFLoader(pdf_doc.name) |
|
documents = loader.load() |
|
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) |
|
pdf_content = ' '.join(text_splitter.split_documents(documents)) |
|
|
|
return "PDF Loaded Successfully." |
|
|
|
except Exception as e: |
|
return f"Error processing PDF: {e}" |
|
|
|
def chat_with_pdf(question): |
|
|
|
model = ChatAnthropic() |
|
|
|
|
|
prompt = ChatPromptTemplate.from_messages([ |
|
("human", pdf_content), |
|
("human", question), |
|
]) |
|
|
|
|
|
chain = prompt | model |
|
response = chain.invoke({}) |
|
|
|
return response.content |
|
|
|
|
|
def gradio_interface(pdf_doc, question): |
|
if not pdf_content: |
|
return load_pdf(pdf_doc) |
|
else: |
|
return chat_with_pdf(question) |
|
|
|
gr.Interface(fn=gradio_interface, |
|
inputs=[gr.File(label="Load a pdf", file_types=['.pdf'], type="file"), |
|
gr.Textbox(label="Ask a question about the PDF")], |
|
outputs="text", |
|
live=True, |
|
title="Chat with PDF content using Anthropic", |
|
description="Upload a .PDF and interactively chat about its content." |
|
).launch() |
|
|