Commit
·
3e93b01
1
Parent(s):
1a0b1c4
revert
Browse files
app.py
CHANGED
@@ -1,32 +1,30 @@
|
|
1 |
-
from summarizer import Summarizer
|
2 |
import gradio as gr
|
3 |
from gradio import state
|
4 |
import os
|
5 |
import time
|
6 |
import threading
|
7 |
from langchain.document_loaders import OnlinePDFLoader
|
|
|
8 |
from langchain.llms import OpenAI
|
|
|
9 |
from langchain.vectorstores import Chroma
|
10 |
from langchain.chains import ConversationalRetrievalChain
|
11 |
|
12 |
os.environ['OPENAI_API_KEY'] = os.getenv("Your_API_Key")
|
13 |
-
bert_model = Summarizer()
|
14 |
|
15 |
# Declare session state for tracking last interaction time
|
16 |
last_interaction_time = state.declare("last_interaction_time", 0)
|
17 |
|
18 |
def loading_pdf():
|
19 |
-
return "Working the upload..."
|
20 |
|
21 |
def pdf_changes(pdf_doc):
|
22 |
loader = OnlinePDFLoader(pdf_doc.name)
|
23 |
documents = loader.load()
|
24 |
-
|
25 |
-
|
26 |
-
summarized_text = bert_model(documents)
|
27 |
-
|
28 |
embeddings = OpenAIEmbeddings()
|
29 |
-
db = Chroma.from_documents(
|
30 |
retriever = db.as_retriever()
|
31 |
global qa
|
32 |
qa = ConversationalRetrievalChain.from_llm(
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from gradio import state
|
3 |
import os
|
4 |
import time
|
5 |
import threading
|
6 |
from langchain.document_loaders import OnlinePDFLoader
|
7 |
+
from langchain.text_splitter import CharacterTextSplitter
|
8 |
from langchain.llms import OpenAI
|
9 |
+
from langchain.embeddings import OpenAIEmbeddings
|
10 |
from langchain.vectorstores import Chroma
|
11 |
from langchain.chains import ConversationalRetrievalChain
|
12 |
|
13 |
os.environ['OPENAI_API_KEY'] = os.getenv("Your_API_Key")
|
|
|
14 |
|
15 |
# Declare session state for tracking last interaction time
|
16 |
last_interaction_time = state.declare("last_interaction_time", 0)
|
17 |
|
18 |
def loading_pdf():
|
19 |
+
return "Working the upload. Also, pondering the usefulness of sporks..."
|
20 |
|
21 |
def pdf_changes(pdf_doc):
|
22 |
loader = OnlinePDFLoader(pdf_doc.name)
|
23 |
documents = loader.load()
|
24 |
+
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
25 |
+
texts = text_splitter.split_documents(documents)
|
|
|
|
|
26 |
embeddings = OpenAIEmbeddings()
|
27 |
+
db = Chroma.from_documents(texts, embeddings)
|
28 |
retriever = db.as_retriever()
|
29 |
global qa
|
30 |
qa = ConversationalRetrievalChain.from_llm(
|