Commit
·
731dcdf
1
Parent(s):
f340ee6
stuffing
Browse files
app.py
CHANGED
@@ -8,6 +8,12 @@ from langchain.llms import OpenAI
|
|
8 |
from langchain.embeddings import OpenAIEmbeddings
|
9 |
from langchain.vectorstores import Chroma
|
10 |
from langchain.chains import ConversationalRetrievalChain
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
os.environ['OPENAI_API_KEY'] = os.getenv("Your_API_Key")
|
13 |
|
@@ -25,49 +31,64 @@ def summary(self):
|
|
25 |
|
26 |
# PDF summary and query using stuffing
|
27 |
def pdf_changes(pdf_doc):
|
28 |
-
|
|
|
29 |
loader = OnlinePDFLoader(pdf_doc.name)
|
30 |
documents = loader.load()
|
|
|
|
|
31 |
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
32 |
texts = text_splitter.split_documents(documents)
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
# Initialize summary variable
|
35 |
full_summary = ""
|
36 |
-
|
37 |
-
#
|
38 |
for i in range(0, len(texts), 2):
|
39 |
-
chunk = " ".join([doc.page_content for doc in texts[i:i+2]])
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
# Load the summarization chain with stuffing method
|
44 |
-
stuff_chain = load_summarize_chain(vertex_llm_text, chain_type="stuff", prompt=prompt)
|
45 |
-
|
46 |
-
# Generate summary for the chunk
|
47 |
-
chunk_summary = stuff_chain.run(chunk)
|
48 |
|
49 |
-
# Add
|
50 |
full_summary += f"Summary of pages {i+1}-{i+3}:\n{chunk_summary}\n"
|
51 |
-
|
|
|
52 |
embeddings = OpenAIEmbeddings()
|
53 |
global db
|
54 |
db = Chroma.from_documents(texts, embeddings)
|
55 |
-
|
56 |
retriever = db.as_retriever()
|
57 |
-
global qa
|
58 |
qa = ConversationalRetrievalChain.from_llm(
|
59 |
llm=OpenAI(temperature=0.2, model_name="gpt-3.5-turbo", max_tokens=-1, n=2),
|
60 |
retriever=retriever,
|
61 |
return_source_documents=False
|
62 |
)
|
63 |
-
|
64 |
return f"Ready. Full Summary:\n{full_summary}"
|
65 |
-
|
66 |
except Exception as e:
|
67 |
return f"Error processing PDF: {str(e)}"
|
68 |
|
69 |
|
70 |
|
|
|
71 |
def clear_data():
|
72 |
global qa, db
|
73 |
qa = None
|
|
|
8 |
from langchain.embeddings import OpenAIEmbeddings
|
9 |
from langchain.vectorstores import Chroma
|
10 |
from langchain.chains import ConversationalRetrievalChain
|
11 |
+
from langchain.chat_models import ChatOpenAI
|
12 |
+
from langchain.document_loaders import WebBaseLoader
|
13 |
+
from langchain.chains.summarize import load_summarize_chain
|
14 |
+
from langchain.chains.llm import LLMChain
|
15 |
+
from langchain.prompts import PromptTemplate
|
16 |
+
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
|
17 |
|
18 |
os.environ['OPENAI_API_KEY'] = os.getenv("Your_API_Key")
|
19 |
|
|
|
31 |
|
32 |
# PDF summary and query using stuffing
|
33 |
def pdf_changes(pdf_doc):
|
34 |
+
try:
|
35 |
+
# Initialize loader and load documents
|
36 |
loader = OnlinePDFLoader(pdf_doc.name)
|
37 |
documents = loader.load()
|
38 |
+
|
39 |
+
# Split loaded documents into chunks
|
40 |
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
41 |
texts = text_splitter.split_documents(documents)
|
42 |
+
|
43 |
+
# Define the prompt for summarization
|
44 |
+
prompt_template = """Write a concise summary of the following:
|
45 |
+
"{text}"
|
46 |
+
CONCISE SUMMARY:"""
|
47 |
+
prompt = PromptTemplate.from_template(prompt_template)
|
48 |
+
|
49 |
+
# Define the LLM chain with the specified prompt
|
50 |
+
llm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo-16k")
|
51 |
+
llm_chain = LLMChain(llm=llm, prompt=prompt)
|
52 |
+
|
53 |
+
# Initialize StuffDocumentsChain
|
54 |
+
stuff_chain = StuffDocumentsChain(
|
55 |
+
llm_chain=llm_chain, document_variable_name="text"
|
56 |
+
)
|
57 |
+
|
58 |
# Initialize summary variable
|
59 |
full_summary = ""
|
60 |
+
|
61 |
+
# Iterate through text chunks to summarize
|
62 |
for i in range(0, len(texts), 2):
|
63 |
+
chunk = " ".join([doc.page_content for doc in texts[i:i + 2]])
|
64 |
+
|
65 |
+
# Generate summary using StuffDocumentsChain
|
66 |
+
chunk_summary = stuff_chain.run([chunk])
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
# Add chunk summary to full summary
|
69 |
full_summary += f"Summary of pages {i+1}-{i+3}:\n{chunk_summary}\n"
|
70 |
+
|
71 |
+
# Other existing logic for Chroma, embeddings, and retrieval
|
72 |
embeddings = OpenAIEmbeddings()
|
73 |
global db
|
74 |
db = Chroma.from_documents(texts, embeddings)
|
75 |
+
|
76 |
retriever = db.as_retriever()
|
77 |
+
global qa
|
78 |
qa = ConversationalRetrievalChain.from_llm(
|
79 |
llm=OpenAI(temperature=0.2, model_name="gpt-3.5-turbo", max_tokens=-1, n=2),
|
80 |
retriever=retriever,
|
81 |
return_source_documents=False
|
82 |
)
|
83 |
+
|
84 |
return f"Ready. Full Summary:\n{full_summary}"
|
85 |
+
|
86 |
except Exception as e:
|
87 |
return f"Error processing PDF: {str(e)}"
|
88 |
|
89 |
|
90 |
|
91 |
+
|
92 |
def clear_data():
|
93 |
global qa, db
|
94 |
qa = None
|