wholewhale commited on
Commit
a7aa0eb
·
1 Parent(s): d64fc58

update summary rev

Browse files
Files changed (1) hide show
  1. app.py +45 -53
app.py CHANGED
@@ -29,6 +29,9 @@ def summary(self):
29
  avg_doc_length = sum(len(doc) for doc in self.documents) / num_documents
30
  return f"Number of documents: {num_documents}, Average document length: {avg_doc_length}"
31
 
 
 
 
32
  # PDF summary and query using stuffing
33
  def pdf_changes(pdf_doc):
34
  try:
@@ -54,6 +57,8 @@ def pdf_changes(pdf_doc):
54
  # Generate summary using StuffDocumentsChain
55
  global full_summary
56
  full_summary = stuff_chain.run(documents)
 
 
57
 
58
  # Other existing logic for Chroma, embeddings, and retrieval
59
  embeddings = OpenAIEmbeddings()
@@ -116,23 +121,23 @@ def infer(question, history):
116
  return f"Error querying chatbot: {str(e)}"
117
 
118
  def auto_clear_data():
119
- global qa, db, last_interaction_time
120
- if time.time() - last_interaction_time > 1000:
121
  qa = None
122
  db = None
123
  print("Data cleared successfully.") # Logging
124
-
125
  def periodic_clear():
126
- while True:
127
- auto_clear_data()
128
- time.sleep(1000)
129
-
130
  threading.Thread(target=periodic_clear).start()
131
-
132
  css = """
133
  #col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
134
  """
135
-
136
  title = """
137
  <div style="text-align: center;max-width: 700px;">
138
  <h1>CauseWriter Chat with PDF • OpenAI</h1>
@@ -141,52 +146,39 @@ title = """
141
  This version is set to erase chat history automatically after page timeout and uses OpenAI.</p>
142
  </div>
143
  """
144
- # Global variable for tracking last interaction time
145
- last_interaction_time = 0
146
- full_summary = "" # Added global full_summary
147
-
148
- def update_summary_box():
149
- global full_summary
150
- return {"summary_box": full_summary}
151
-
152
  with gr.Blocks(css=css) as demo:
153
- with gr.Column(elem_id="col-container"):
154
- gr.HTML(title)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155
 
156
- with gr.Column():
157
- pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file")
158
- with gr.Row():
159
- langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
160
- load_pdf = gr.Button("Convert PDF to Magic AI language")
161
- clear_btn = gr.Button("Clear Data")
162
-
163
- # New Textbox to display summary
164
- summary_box = gr.Textbox(
165
- label="Document Summary",
166
- placeholder="Summary will appear here.",
167
- interactive=False,
168
- rows=5,
169
- elem_id="summary_box" # Set the elem_id to match the state key
170
  )
171
-
172
 
173
- chatbot = gr.Chatbot([], elem_id="chatbot").style(height=450)
174
- question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter")
175
- submit_btn = gr.Button("Send Message")
176
-
177
- load_pdf.click(loading_pdf, None, langchain_status, queue=False)
178
- load_pdf.click(pdf_changes, inputs=[pdf_doc], outputs=[langchain_status], queue=False).then(
179
- update_summary_box
180
- )
181
-
182
-
183
- # Then update the summary_box
184
- clear_btn.click(clear_data, outputs=[langchain_status], queue=False)
185
- question.submit(add_text, [chatbot, question], [chatbot, question]).then(
186
- bot, chatbot, chatbot
187
- )
188
- submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then(
189
- bot, chatbot, chatbot
190
- )
191
-
192
  demo.launch()
 
29
  avg_doc_length = sum(len(doc) for doc in self.documents) / num_documents
30
  return f"Number of documents: {num_documents}, Average document length: {avg_doc_length}"
31
 
32
+ # Gradio state
33
+ summary_state = gr.State(initial_value="pending")
34
+
35
  # PDF summary and query using stuffing
36
  def pdf_changes(pdf_doc):
37
  try:
 
57
  # Generate summary using StuffDocumentsChain
58
  global full_summary
59
  full_summary = stuff_chain.run(documents)
60
+ # Update the state variable
61
+ return {summary_state: full_summary}
62
 
63
  # Other existing logic for Chroma, embeddings, and retrieval
64
  embeddings = OpenAIEmbeddings()
 
121
  return f"Error querying chatbot: {str(e)}"
122
 
123
  def auto_clear_data():
124
+ global qa, db, last_interaction_time
125
+ if time.time() - last_interaction_time > 1000:
126
  qa = None
127
  db = None
128
  print("Data cleared successfully.") # Logging
129
+
130
  def periodic_clear():
131
+ while True:
132
+ auto_clear_data()
133
+ time.sleep(1000)
134
+
135
  threading.Thread(target=periodic_clear).start()
136
+
137
  css = """
138
  #col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
139
  """
140
+
141
  title = """
142
  <div style="text-align: center;max-width: 700px;">
143
  <h1>CauseWriter Chat with PDF • OpenAI</h1>
 
146
  This version is set to erase chat history automatically after page timeout and uses OpenAI.</p>
147
  </div>
148
  """
149
+
 
 
 
 
 
 
 
150
  with gr.Blocks(css=css) as demo:
151
+ with gr.Column(elem_id="col-container"):
152
+ gr.HTML(title)
153
+
154
+ with gr.Column():
155
+ pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file")
156
+ with gr.Row():
157
+ langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
158
+ load_pdf = gr.Button("Convert PDF to Magic AI language")
159
+ clear_btn = gr.Button("Clear Data")
160
+
161
+ # New Textbox to display summary
162
+ summary_box = gr.Textbox(
163
+ label="Document Summary",
164
+ placeholder="Summary will appear here.",
165
+ interactive=False,
166
+ rows=5,
167
+ elem_id="summary_box" # Set the elem_id to match the state key
168
+ )
169
+
170
+ chatbot = gr.Chatbot([], elem_id="chatbot").style(height=450)
171
+ question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter")
172
+ submit_btn = gr.Button("Send Message")
173
 
174
+ # Step 2 and 3: Put the State object as an input and output
175
+ load_pdf.click(pdf_changes, inputs=[pdf_doc, summary_state], outputs=[langchain_status, summary_state])
176
+ clear_btn.click(clear_data, outputs=[langchain_status])
177
+ question.submit(add_text, [chatbot, question], [chatbot, question]).then(
178
+ bot, chatbot, chatbot
179
+ )
180
+ submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then(
181
+ bot, chatbot, chatbot
 
 
 
 
 
 
182
  )
 
183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184
  demo.launch()