wholewhale commited on
Commit
d05ba12
·
1 Parent(s): b1c579e

auto clear

Browse files
Files changed (1) hide show
  1. app.py +23 -4
app.py CHANGED
@@ -1,6 +1,8 @@
1
  import gradio as gr
 
2
  import os
3
  import time
 
4
  from langchain.document_loaders import OnlinePDFLoader
5
  from langchain.text_splitter import CharacterTextSplitter
6
  from langchain.llms import OpenAI
@@ -10,6 +12,9 @@ from langchain.chains import ConversationalRetrievalChain
10
 
11
  os.environ['OPENAI_API_KEY'] = os.getenv("Your_API_Key")
12
 
 
 
 
13
  def loading_pdf():
14
  return "Working the upload. Also, pondering the usefulness of sporks..."
15
 
@@ -23,9 +28,10 @@ def pdf_changes(pdf_doc):
23
  retriever = db.as_retriever()
24
  global qa
25
  qa = ConversationalRetrievalChain.from_llm(
26
- llm=OpenAI(temperature=0.5),
27
- retriever=retriever,
28
- return_source_documents=False)
 
29
  return "Ready"
30
 
31
  def clear_data():
@@ -34,6 +40,8 @@ def clear_data():
34
  return "Data cleared"
35
 
36
  def add_text(history, text):
 
 
37
  history = history + [(text, None)]
38
  return history, ""
39
 
@@ -52,12 +60,23 @@ def infer(question, history):
52
  for human, ai in history[:-1]:
53
  pair = (human, ai)
54
  res.append(pair)
55
-
56
  chat_history = res
57
  query = question
58
  result = qa({"question": query, "chat_history": chat_history})
59
  return result["answer"]
60
 
 
 
 
 
 
 
 
 
 
 
 
 
61
  css = """
62
  #col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
63
  """
 
1
  import gradio as gr
2
+ from gradio import state
3
  import os
4
  import time
5
+ import threading
6
  from langchain.document_loaders import OnlinePDFLoader
7
  from langchain.text_splitter import CharacterTextSplitter
8
  from langchain.llms import OpenAI
 
12
 
13
  os.environ['OPENAI_API_KEY'] = os.getenv("Your_API_Key")
14
 
15
+ # Declare session state for tracking last interaction time
16
+ last_interaction_time = state.declare("last_interaction_time", 0)
17
+
18
  def loading_pdf():
19
  return "Working the upload. Also, pondering the usefulness of sporks..."
20
 
 
28
  retriever = db.as_retriever()
29
  global qa
30
  qa = ConversationalRetrievalChain.from_llm(
31
+ llm=OpenAI(temperature=0.5),
32
+ retriever=retriever,
33
+ return_source_documents=False
34
+ )
35
  return "Ready"
36
 
37
  def clear_data():
 
40
  return "Data cleared"
41
 
42
  def add_text(history, text):
43
+ global last_interaction_time
44
+ last_interaction_time = time.time()
45
  history = history + [(text, None)]
46
  return history, ""
47
 
 
60
  for human, ai in history[:-1]:
61
  pair = (human, ai)
62
  res.append(pair)
 
63
  chat_history = res
64
  query = question
65
  result = qa({"question": query, "chat_history": chat_history})
66
  return result["answer"]
67
 
68
+ def auto_clear_data():
69
+ global qa, last_interaction_time
70
+ if time.time() - last_interaction_time > 600: # 600 seconds = 10 minutes
71
+ qa = None
72
+
73
+ def periodic_clear():
74
+ while True:
75
+ auto_clear_data()
76
+ time.sleep(60) # Check every minute
77
+
78
+ threading.Thread(target=periodic_clear).start()
79
+
80
  css = """
81
  #col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
82
  """