Commit
·
e455307
1
Parent(s):
2f0e211
Replaced API form
Browse files
app.py
CHANGED
@@ -1,42 +1,33 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
import time
|
4 |
-
|
5 |
from langchain.document_loaders import OnlinePDFLoader
|
6 |
-
|
7 |
from langchain.text_splitter import CharacterTextSplitter
|
8 |
-
|
9 |
-
|
10 |
from langchain.llms import OpenAI
|
11 |
-
|
12 |
from langchain.embeddings import OpenAIEmbeddings
|
13 |
-
|
14 |
-
|
15 |
from langchain.vectorstores import Chroma
|
16 |
-
|
17 |
from langchain.chains import ConversationalRetrievalChain
|
18 |
|
|
|
|
|
|
|
19 |
def loading_pdf():
|
20 |
return "Loading..."
|
21 |
|
22 |
-
def pdf_changes(pdf_doc
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
return_source_documents=False)
|
37 |
-
return "Ready"
|
38 |
-
else:
|
39 |
-
return "You forgot OpenAI API key"
|
40 |
|
41 |
def add_text(history, text):
|
42 |
history = history + [(text, None)]
|
@@ -51,22 +42,18 @@ def bot(history):
|
|
51 |
time.sleep(0.05)
|
52 |
yield history
|
53 |
|
54 |
-
|
55 |
def infer(question, history):
|
56 |
-
|
57 |
res = []
|
58 |
for human, ai in history[:-1]:
|
59 |
pair = (human, ai)
|
60 |
res.append(pair)
|
61 |
|
62 |
chat_history = res
|
63 |
-
#print(chat_history)
|
64 |
query = question
|
65 |
result = qa({"question": query, "chat_history": chat_history})
|
66 |
-
#print(result)
|
67 |
return result["answer"]
|
68 |
|
69 |
-
css="""
|
70 |
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
|
71 |
"""
|
72 |
|
@@ -75,31 +62,31 @@ title = """
|
|
75 |
<h1>Chat with PDF • OpenAI</h1>
|
76 |
<p style="text-align: center;">Upload a .PDF from your computer, click the "Load PDF to LangChain" button, <br />
|
77 |
when everything is ready, you can start asking questions about the pdf ;) <br />
|
78 |
-
This version is set to store chat history, and uses OpenAI as LLM
|
79 |
</div>
|
80 |
"""
|
81 |
|
82 |
-
|
83 |
with gr.Blocks(css=css) as demo:
|
84 |
with gr.Column(elem_id="col-container"):
|
85 |
gr.HTML(title)
|
86 |
|
87 |
with gr.Column():
|
88 |
-
openai_key = gr.Textbox(label="You OpenAI API key", type="password")
|
89 |
pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file")
|
90 |
with gr.Row():
|
91 |
langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
|
92 |
load_pdf = gr.Button("Load pdf to langchain")
|
93 |
|
94 |
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
|
95 |
-
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter
|
96 |
submit_btn = gr.Button("Send Message")
|
97 |
-
|
98 |
-
load_pdf.click(
|
|
|
99 |
question.submit(add_text, [chatbot, question], [chatbot, question]).then(
|
100 |
bot, chatbot, chatbot
|
101 |
)
|
102 |
submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then(
|
103 |
-
bot, chatbot, chatbot
|
|
|
104 |
|
105 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
import time
|
|
|
4 |
from langchain.document_loaders import OnlinePDFLoader
|
|
|
5 |
from langchain.text_splitter import CharacterTextSplitter
|
|
|
|
|
6 |
from langchain.llms import OpenAI
|
|
|
7 |
from langchain.embeddings import OpenAIEmbeddings
|
|
|
|
|
8 |
from langchain.vectorstores import Chroma
|
|
|
9 |
from langchain.chains import ConversationalRetrievalChain
|
10 |
|
11 |
+
# Set OpenAI API key from environment variable
|
12 |
+
os.environ['OPENAI_API_KEY'] = os.getenv("Your_API_Key")
|
13 |
+
|
14 |
def loading_pdf():
|
15 |
return "Loading..."
|
16 |
|
17 |
+
def pdf_changes(pdf_doc):
|
18 |
+
loader = OnlinePDFLoader(pdf_doc.name)
|
19 |
+
documents = loader.load()
|
20 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
21 |
+
texts = text_splitter.split_documents(documents)
|
22 |
+
embeddings = OpenAIEmbeddings()
|
23 |
+
db = Chroma.from_documents(texts, embeddings)
|
24 |
+
retriever = db.as_retriever()
|
25 |
+
global qa
|
26 |
+
qa = ConversationalRetrievalChain.from_llm(
|
27 |
+
llm=OpenAI(temperature=0.5),
|
28 |
+
retriever=retriever,
|
29 |
+
return_source_documents=False)
|
30 |
+
return "Ready"
|
|
|
|
|
|
|
|
|
31 |
|
32 |
def add_text(history, text):
|
33 |
history = history + [(text, None)]
|
|
|
42 |
time.sleep(0.05)
|
43 |
yield history
|
44 |
|
|
|
45 |
def infer(question, history):
|
|
|
46 |
res = []
|
47 |
for human, ai in history[:-1]:
|
48 |
pair = (human, ai)
|
49 |
res.append(pair)
|
50 |
|
51 |
chat_history = res
|
|
|
52 |
query = question
|
53 |
result = qa({"question": query, "chat_history": chat_history})
|
|
|
54 |
return result["answer"]
|
55 |
|
56 |
+
css = """
|
57 |
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
|
58 |
"""
|
59 |
|
|
|
62 |
<h1>Chat with PDF • OpenAI</h1>
|
63 |
<p style="text-align: center;">Upload a .PDF from your computer, click the "Load PDF to LangChain" button, <br />
|
64 |
when everything is ready, you can start asking questions about the pdf ;) <br />
|
65 |
+
This version is set to store chat history, and uses OpenAI as LLM.</p>
|
66 |
</div>
|
67 |
"""
|
68 |
|
|
|
69 |
with gr.Blocks(css=css) as demo:
|
70 |
with gr.Column(elem_id="col-container"):
|
71 |
gr.HTML(title)
|
72 |
|
73 |
with gr.Column():
|
|
|
74 |
pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file")
|
75 |
with gr.Row():
|
76 |
langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
|
77 |
load_pdf = gr.Button("Load pdf to langchain")
|
78 |
|
79 |
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
|
80 |
+
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter")
|
81 |
submit_btn = gr.Button("Send Message")
|
82 |
+
|
83 |
+
load_pdf.click(loading_pdf, None, langchain_status, queue=False)
|
84 |
+
load_pdf.click(pdf_changes, inputs=[pdf_doc], outputs=[langchain_status], queue=False)
|
85 |
question.submit(add_text, [chatbot, question], [chatbot, question]).then(
|
86 |
bot, chatbot, chatbot
|
87 |
)
|
88 |
submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then(
|
89 |
+
bot, chatbot, chatbot
|
90 |
+
)
|
91 |
|
92 |
+
demo.launch()
|