import gradio as gr import os import time import threading from langchain.document_loaders import OnlinePDFLoader from langchain.text_splitter import CharacterTextSplitter from langchain.llms import OpenAI from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import Chroma from langchain.chains import ConversationalRetrievalChain os.environ['OPENAI_API_KEY'] = os.getenv("Your_API_Key") # Global variable for tracking last interaction time last_interaction_time = 0 def loading_pdf(): return "Working on the upload. Also, pondering the usefulness of sporks..." # Inside Chroma mod def summary(self): num_documents = len(self.documents) avg_doc_length = sum(len(doc) for doc in self.documents) / num_documents return f"Number of documents: {num_documents}, Average document length: {avg_doc_length}" # PDF summary and query using stuffing def pdf_changes(pdf_doc): try: loader = OnlinePDFLoader(pdf_doc.name) documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=100) texts = text_splitter.split_documents(documents) # Initialize summary variable full_summary = "" # Divide the text into smaller chunks, for example 3 pages per chunk for i in range(0, len(texts), 3): chunk = " ".join(texts[i:i+3]) # Load the summarization chain with stuffing method stuff_chain = load_summarize_chain(vertex_llm_text, chain_type="stuff", prompt=prompt) # Generate summary for the chunk chunk_summary = stuff_chain.run(chunk) # Add the chunk summary to the full summary full_summary += f"Summary of pages {i+1}-{i+3}:\n{chunk_summary}\n" embeddings = OpenAIEmbeddings() global db db = Chroma.from_documents(texts, embeddings) retriever = db.as_retriever() global qa qa = ConversationalRetrievalChain.from_llm( llm=OpenAI(temperature=0.2, model_name="gpt-3.5-turbo", max_tokens=-1, n=2), retriever=retriever, return_source_documents=False ) return f"Ready. Full Summary:\n{full_summary}" except Exception as e: return f"Error processing PDF: {str(e)}" def clear_data(): global qa, db qa = None db = None return "Data cleared" def add_text(history, text): global last_interaction_time last_interaction_time = time.time() history = history + [(text, None)] return history, "" def bot(history): response = infer(history[-1][0], history) sentences = ' \n'.join(response.split('. ')) formatted_response = f"**Bot:**\n\n{sentences}" history[-1][1] = formatted_response return history def infer(question, history): try: res = [] for human, ai in history[:-1]: pair = (human, ai) res.append(pair) chat_history = res query = question result = qa({"question": query, "chat_history": chat_history, "system": "This is a world-class summarizing AI, be helpful."}) return result["answer"] except Exception as e: return f"Error querying chatbot: {str(e)}" def auto_clear_data(): global qa, da, last_interaction_time if time.time() - last_interaction_time > 1000: qa = None db = None def periodic_clear(): while True: auto_clear_data() time.sleep(1000) threading.Thread(target=periodic_clear).start() css = """ #col-container {max-width: 700px; margin-left: auto; margin-right: auto;} """ title = """

CauseWriter Chat with PDF • OpenAI

Upload a .PDF from your computer, click the "Load PDF to LangChain" button,
when everything is ready, you can start asking questions about the pdf.
This version is set to store chat history and uses OpenAI as LLM.

""" with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.HTML(title) with gr.Column(): pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file") with gr.Row(): langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False) load_pdf = gr.Button("Convert PDF to Magic AI language") clear_btn = gr.Button("Clear Data") chatbot = gr.Chatbot([], elem_id="chatbot").style(height=450) question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter") submit_btn = gr.Button("Send Message") load_pdf.click(loading_pdf, None, langchain_status, queue=False) load_pdf.click(pdf_changes, inputs=[pdf_doc], outputs=[langchain_status], queue=False) clear_btn.click(clear_data, outputs=[langchain_status], queue=False) question.submit(add_text, [chatbot, question], [chatbot, question]).then( bot, chatbot, chatbot ) submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then( bot, chatbot, chatbot ) demo.launch()