File size: 7,074 Bytes
9c9eef9 ebe2332 56888a5 ebe2332 56888a5 ebe2332 56888a5 ebe2332 424e459 6de7312 8dea557 6de7312 8dea557 6de7312 424e459 b49d6ac 424e459 6de7312 b116a79 424e459 ebe2332 6de7312 ebe2332 424e459 ebe2332 424e459 ebe2332 0e95924 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import torch
from transformers import (
Qwen2VLForConditionalGeneration,
AutoProcessor,
AutoModelForCausalLM,
AutoTokenizer
)
from qwen_vl_utils import process_vision_info
from PIL import Image
import cv2
import numpy as np
import gradio as gr
import spaces
# Load both models and their processors/tokenizers
def load_models():
# Vision model
vision_model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-2B-Instruct",
torch_dtype=torch.float16,
device_map="auto"
)
vision_processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
# Code model
code_model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen2.5-Coder-1.5B-Instruct",
torch_dtype=torch.float16,
device_map="auto"
)
code_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Coder-1.5B-Instruct")
return vision_model, vision_processor, code_model, code_tokenizer
vision_model, vision_processor, code_model, code_tokenizer = load_models()
VISION_SYSTEM_PROMPT = """You are an AI assistant specialized in analyzing images and videos of code editors. Your task is to:
1. Focus EXCLUSIVELY on frames containing code snippets or development environments.
2. Extract and describe ONLY the visible code snippets, completely ignoring any non-code content.
3. Identify any error messages, warnings, or highlighting that indicates bugs within the code.
Important:
- Completely disregard any frames showing the Eterniq dashboard, other window tabs, or non-code related screens.
- Provide descriptions ONLY for code-specific content.
- If multiple code snippets are visible in different frames, describe each separately.
- Do not mention or describe any user interface elements, buttons, or non-code visuals.
Your analysis will be used to understand and potentially fix the code, so maintain a high level of detail and accuracy in your descriptions of code-related content only.
"""
CODE_SYSTEM_PROMPT = """You are an expert code debugging assistant. Based on the description of code and errors provided, your task is to:
1. Identify the bugs and issues in the code
2. Provide a corrected version of the code
3. Explain the fixes made and why they resolve the issues
Be thorough in your explanation and ensure the corrected code is complete and functional.
Focus solely on the code and its issues, ignoring any mentions of user interfaces or non-code elements.
Note: Please provide the output in a well-structured Markdown format. Remove all unnecessary information and exclude any additional code formatting such as triple backticks or language identifiers. The response should be ready to be rendered as Markdown content.
"""
def process_image_for_code(image):
# First, process with vision model
vision_messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": f"{VISION_SYSTEM_PROMPT}\n\nDescribe the code and any errors you see in this image."},
],
}
]
vision_text = vision_processor.apply_chat_template(
vision_messages,
tokenize=False,
add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(vision_messages)
vision_inputs = vision_processor(
text=[vision_text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
).to(vision_model.device)
with torch.no_grad():
vision_output_ids = vision_model.generate(**vision_inputs, max_new_tokens=512)
vision_output_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(vision_inputs.input_ids, vision_output_ids)
]
vision_description = vision_processor.batch_decode(
vision_output_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)[0]
# Then, use code model to fix the code
code_messages = [
{"role": "system", "content": CODE_SYSTEM_PROMPT},
{"role": "user", "content": f"Here's a description of code with errors:\n\n{vision_description}\n\nPlease analyze and fix the code."}
]
code_text = code_tokenizer.apply_chat_template(
code_messages,
tokenize=False,
add_generation_prompt=True
)
code_inputs = code_tokenizer([code_text], return_tensors="pt").to(code_model.device)
with torch.no_grad():
code_output_ids = code_model.generate(
**code_inputs,
max_new_tokens=1024,
temperature=0.7,
top_p=0.95,
)
code_output_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(code_inputs.input_ids, code_output_ids)
]
fixed_code_response = code_tokenizer.batch_decode(
code_output_trimmed,
skip_special_tokens=True
)[0]
return vision_description, fixed_code_response
def process_video_for_code(video_path, max_frames=16, frame_interval=30):
cap = cv2.VideoCapture(video_path)
frames = []
frame_count = 0
while len(frames) < max_frames:
ret, frame = cap.read()
if not ret:
break
if frame_count % frame_interval == 0:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = Image.fromarray(frame)
frames.append(frame)
frame_count += 1
cap.release()
# Process all extracted frames
vision_outputs = []
for frame in frames:
vision_output, _ = process_image_for_code(frame)
if vision_output.strip() and "no code" not in vision_output.lower():
vision_outputs.append(vision_output)
# Combine vision outputs and process with code model
combined_vision_output = "\n\n".join(vision_outputs)
_, code_output = process_image_for_code(combined_vision_output)
return combined_vision_output, code_output
@spaces.GPU
def process_content(content):
if content is None:
return "Please upload an image or video file of code with errors.", ""
if content.name.lower().endswith(('.png', '.jpg', '.jpeg')):
image = Image.open(content.name)
vision_output, code_output = process_image_for_code(image)
elif content.name.lower().endswith(('.mp4', '.avi', '.mov')):
vision_output, code_output = process_video_for_code(content.name)
else:
return "Unsupported file type. Please provide an image or video file.", ""
return vision_output, code_output
# Gradio interface
iface = gr.Interface(
fn=process_content,
inputs=gr.File(label="Upload Image or Video of Code with Errors"),
outputs=[
gr.Textbox(label="Vision Model Output (Code Description)"),
gr.Code(label="Fixed Code", language="python")
],
title="Vision Code Debugger",
description="Upload an image or video of code with errors, and the AI will analyze and fix the issues."
)
if __name__ == "__main__":
iface.launch() |