File size: 7,074 Bytes
9c9eef9
ebe2332
 
 
 
 
 
 
 
 
 
56888a5
ebe2332
56888a5
ebe2332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56888a5
ebe2332
 
424e459
6de7312
 
8dea557
 
6de7312
 
8dea557
6de7312
 
424e459
b49d6ac
424e459
 
 
 
 
6de7312
b116a79
424e459
ebe2332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6de7312
 
 
 
 
 
 
 
 
 
 
 
ebe2332
 
 
 
 
 
424e459
 
 
 
 
 
 
ebe2332
 
 
 
 
 
 
 
 
 
 
 
424e459
ebe2332
 
 
0e95924
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import torch
from transformers import (
    Qwen2VLForConditionalGeneration, 
    AutoProcessor,
    AutoModelForCausalLM, 
    AutoTokenizer
)
from qwen_vl_utils import process_vision_info
from PIL import Image
import cv2
import numpy as np
import gradio as gr
import spaces

# Load both models and their processors/tokenizers
def load_models():
    # Vision model
    vision_model = Qwen2VLForConditionalGeneration.from_pretrained(
        "Qwen/Qwen2-VL-2B-Instruct",
        torch_dtype=torch.float16,
        device_map="auto"
    )
    vision_processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
    
    # Code model
    code_model = AutoModelForCausalLM.from_pretrained(
        "Qwen/Qwen2.5-Coder-1.5B-Instruct",
        torch_dtype=torch.float16,
        device_map="auto"
    )
    code_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Coder-1.5B-Instruct")
    
    return vision_model, vision_processor, code_model, code_tokenizer

vision_model, vision_processor, code_model, code_tokenizer = load_models()

VISION_SYSTEM_PROMPT = """You are an AI assistant specialized in analyzing images and videos of code editors. Your task is to:
1. Focus EXCLUSIVELY on frames containing code snippets or development environments.
2. Extract and describe ONLY the visible code snippets, completely ignoring any non-code content.
3. Identify any error messages, warnings, or highlighting that indicates bugs within the code.
Important:
- Completely disregard any frames showing the Eterniq dashboard, other window tabs, or non-code related screens.
- Provide descriptions ONLY for code-specific content.
- If multiple code snippets are visible in different frames, describe each separately.
- Do not mention or describe any user interface elements, buttons, or non-code visuals.
Your analysis will be used to understand and potentially fix the code, so maintain a high level of detail and accuracy in your descriptions of code-related content only.
"""

CODE_SYSTEM_PROMPT = """You are an expert code debugging assistant. Based on the description of code and errors provided, your task is to:
1. Identify the bugs and issues in the code
2. Provide a corrected version of the code
3. Explain the fixes made and why they resolve the issues
Be thorough in your explanation and ensure the corrected code is complete and functional.
Focus solely on the code and its issues, ignoring any mentions of user interfaces or non-code elements.
Note: Please provide the output in a well-structured Markdown format. Remove all unnecessary information and exclude any additional code formatting such as triple backticks or language identifiers. The response should be ready to be rendered as Markdown content.
"""

def process_image_for_code(image):
    # First, process with vision model
    vision_messages = [
        {
            "role": "user",
            "content": [
                {"type": "image", "image": image},
                {"type": "text", "text": f"{VISION_SYSTEM_PROMPT}\n\nDescribe the code and any errors you see in this image."},
            ],
        }
    ]

    vision_text = vision_processor.apply_chat_template(
        vision_messages, 
        tokenize=False, 
        add_generation_prompt=True
    )
    image_inputs, video_inputs = process_vision_info(vision_messages)

    vision_inputs = vision_processor(
        text=[vision_text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    ).to(vision_model.device)

    with torch.no_grad():
        vision_output_ids = vision_model.generate(**vision_inputs, max_new_tokens=512)
    vision_output_trimmed = [
        out_ids[len(in_ids):] for in_ids, out_ids in zip(vision_inputs.input_ids, vision_output_ids)
    ]
    vision_description = vision_processor.batch_decode(
        vision_output_trimmed, 
        skip_special_tokens=True, 
        clean_up_tokenization_spaces=False
    )[0]

    # Then, use code model to fix the code
    code_messages = [
        {"role": "system", "content": CODE_SYSTEM_PROMPT},
        {"role": "user", "content": f"Here's a description of code with errors:\n\n{vision_description}\n\nPlease analyze and fix the code."}
    ]
    
    code_text = code_tokenizer.apply_chat_template(
        code_messages,
        tokenize=False,
        add_generation_prompt=True
    )
    
    code_inputs = code_tokenizer([code_text], return_tensors="pt").to(code_model.device)
    
    with torch.no_grad():
        code_output_ids = code_model.generate(
            **code_inputs,
            max_new_tokens=1024,
            temperature=0.7,
            top_p=0.95,
        )
    
    code_output_trimmed = [
        out_ids[len(in_ids):] for in_ids, out_ids in zip(code_inputs.input_ids, code_output_ids)
    ]
    fixed_code_response = code_tokenizer.batch_decode(
        code_output_trimmed,
        skip_special_tokens=True
    )[0]
    
    return vision_description, fixed_code_response

def process_video_for_code(video_path, max_frames=16, frame_interval=30):
    cap = cv2.VideoCapture(video_path)
    frames = []
    frame_count = 0
    
    while len(frames) < max_frames:
        ret, frame = cap.read()
        if not ret:
            break
            
        if frame_count % frame_interval == 0:
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            frame = Image.fromarray(frame)
            frames.append(frame)
            
        frame_count += 1
        
    cap.release()
    
    # Process all extracted frames
    vision_outputs = []
    for frame in frames:
        vision_output, _ = process_image_for_code(frame)
        if vision_output.strip() and "no code" not in vision_output.lower():
            vision_outputs.append(vision_output)
    
    # Combine vision outputs and process with code model
    combined_vision_output = "\n\n".join(vision_outputs)
    _, code_output = process_image_for_code(combined_vision_output)
    
    return combined_vision_output, code_output

@spaces.GPU
def process_content(content):
    if content is None:
        return "Please upload an image or video file of code with errors.", ""

    if content.name.lower().endswith(('.png', '.jpg', '.jpeg')):
        image = Image.open(content.name)
        vision_output, code_output = process_image_for_code(image)
    elif content.name.lower().endswith(('.mp4', '.avi', '.mov')):
        vision_output, code_output = process_video_for_code(content.name)
    else:
        return "Unsupported file type. Please provide an image or video file.", ""

    return vision_output, code_output

# Gradio interface
iface = gr.Interface(
    fn=process_content,
    inputs=gr.File(label="Upload Image or Video of Code with Errors"),
    outputs=[
        gr.Textbox(label="Vision Model Output (Code Description)"),
        gr.Code(label="Fixed Code", language="python")
    ],
    title="Vision Code Debugger",
    description="Upload an image or video of code with errors, and the AI will analyze and fix the issues."
)

if __name__ == "__main__":
    iface.launch()