|
import torch |
|
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor |
|
from qwen_vl_utils import process_vision_info |
|
from PIL import Image |
|
import cv2 |
|
import numpy as np |
|
import gradio as gr |
|
|
|
|
|
if not torch.cuda.is_available(): |
|
raise RuntimeError("This application requires a GPU to run. No GPU detected.") |
|
|
|
|
|
def load_model(): |
|
try: |
|
model = Qwen2VLForConditionalGeneration.from_pretrained( |
|
"Qwen/Qwen2-VL-2B-Instruct", |
|
torch_dtype=torch.float16 |
|
).to("cuda") |
|
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct") |
|
return model, processor |
|
except RuntimeError as e: |
|
print(f"Error loading model: {e}") |
|
raise |
|
|
|
try: |
|
model, processor = load_model() |
|
except Exception as e: |
|
print(f"Failed to load model: {e}") |
|
raise |
|
|
|
def process_image(image): |
|
try: |
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "image", "image": image}, |
|
{"type": "text", "text": "Describe this image."}, |
|
], |
|
} |
|
] |
|
|
|
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
image_inputs, video_inputs = process_vision_info(messages) |
|
|
|
inputs = processor( |
|
text=[text], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt", |
|
).to("cuda") |
|
|
|
with torch.no_grad(): |
|
generated_ids = model.generate(**inputs, max_new_tokens=256) |
|
generated_ids_trimmed = [ |
|
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) |
|
] |
|
output_text = processor.batch_decode( |
|
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
) |
|
|
|
return output_text[0] |
|
except Exception as e: |
|
return f"An error occurred while processing the image: {str(e)}" |
|
|
|
def process_video(video_path, max_frames=16, frame_interval=30, max_resolution=224): |
|
try: |
|
cap = cv2.VideoCapture(video_path) |
|
frames = [] |
|
frame_count = 0 |
|
|
|
while len(frames) < max_frames: |
|
ret, frame = cap.read() |
|
if not ret: |
|
break |
|
|
|
if frame_count % frame_interval == 0: |
|
h, w = frame.shape[:2] |
|
if h > w: |
|
new_h, new_w = max_resolution, int(w * max_resolution / h) |
|
else: |
|
new_h, new_w = int(h * max_resolution / w), max_resolution |
|
frame = cv2.resize(frame, (new_w, new_h)) |
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
frame = Image.fromarray(frame) |
|
frames.append(frame) |
|
|
|
frame_count += 1 |
|
|
|
cap.release() |
|
|
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "video", "video": frames}, |
|
{"type": "text", "text": "Describe this video."}, |
|
], |
|
} |
|
] |
|
|
|
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
image_inputs, video_inputs = process_vision_info(messages) |
|
|
|
inputs = processor( |
|
text=[text], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt", |
|
).to("cuda") |
|
|
|
with torch.no_grad(): |
|
generated_ids = model.generate(**inputs, max_new_tokens=256) |
|
generated_ids_trimmed = [ |
|
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) |
|
] |
|
output_text = processor.batch_decode( |
|
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
) |
|
|
|
return output_text[0] |
|
except Exception as e: |
|
return f"An error occurred while processing the video: {str(e)}" |
|
|
|
def process_content(content): |
|
if content is None: |
|
return "Please upload an image or video file." |
|
|
|
try: |
|
if content.name.lower().endswith(('.png', '.jpg', '.jpeg')): |
|
return process_image(Image.open(content.name)) |
|
elif content.name.lower().endswith(('.mp4', '.avi', '.mov')): |
|
return process_video(content.name) |
|
else: |
|
return "Unsupported file type. Please provide an image or video file." |
|
except Exception as e: |
|
return f"An error occurred while processing the content: {str(e)}" |
|
|
|
|
|
iface = gr.Interface( |
|
fn=process_content, |
|
inputs=gr.File(label="Upload Image or Video"), |
|
outputs="text", |
|
title="Image and Video Description (GPU Version)", |
|
description="Upload an image or video to get a description. This application requires GPU computation.", |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |