Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
3 |
+
from qwen_vl_utils import process_vision_info
|
4 |
+
from PIL import Image
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
# Load the model and processor
|
10 |
+
def load_model():
|
11 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
12 |
+
"Qwen/Qwen2-VL-2B-Instruct",
|
13 |
+
torch_dtype=torch.float16
|
14 |
+
).to("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
|
16 |
+
return model, processor
|
17 |
+
|
18 |
+
model, processor = load_model()
|
19 |
+
|
20 |
+
def process_image(image):
|
21 |
+
messages = [
|
22 |
+
{
|
23 |
+
"role": "user",
|
24 |
+
"content": [
|
25 |
+
{"type": "image", "image": image},
|
26 |
+
{"type": "text", "text": "Describe this image."},
|
27 |
+
],
|
28 |
+
}
|
29 |
+
]
|
30 |
+
|
31 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
32 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
33 |
+
|
34 |
+
inputs = processor(
|
35 |
+
text=[text],
|
36 |
+
images=image_inputs,
|
37 |
+
videos=video_inputs,
|
38 |
+
padding=True,
|
39 |
+
return_tensors="pt",
|
40 |
+
).to(model.device)
|
41 |
+
|
42 |
+
with torch.no_grad():
|
43 |
+
generated_ids = model.generate(**inputs, max_new_tokens=256)
|
44 |
+
generated_ids_trimmed = [
|
45 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
46 |
+
]
|
47 |
+
output_text = processor.batch_decode(
|
48 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
49 |
+
)
|
50 |
+
|
51 |
+
return output_text[0]
|
52 |
+
|
53 |
+
def process_video(video_path, max_frames=16, frame_interval=30, max_resolution=224):
|
54 |
+
cap = cv2.VideoCapture(video_path)
|
55 |
+
frames = []
|
56 |
+
frame_count = 0
|
57 |
+
|
58 |
+
while len(frames) < max_frames:
|
59 |
+
ret, frame = cap.read()
|
60 |
+
if not ret:
|
61 |
+
break
|
62 |
+
|
63 |
+
if frame_count % frame_interval == 0:
|
64 |
+
h, w = frame.shape[:2]
|
65 |
+
if h > w:
|
66 |
+
new_h, new_w = max_resolution, int(w * max_resolution / h)
|
67 |
+
else:
|
68 |
+
new_h, new_w = int(h * max_resolution / w), max_resolution
|
69 |
+
frame = cv2.resize(frame, (new_w, new_h))
|
70 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
71 |
+
frame = Image.fromarray(frame)
|
72 |
+
frames.append(frame)
|
73 |
+
|
74 |
+
frame_count += 1
|
75 |
+
|
76 |
+
cap.release()
|
77 |
+
|
78 |
+
messages = [
|
79 |
+
{
|
80 |
+
"role": "user",
|
81 |
+
"content": [
|
82 |
+
{"type": "video", "video": frames},
|
83 |
+
{"type": "text", "text": "Describe this video."},
|
84 |
+
],
|
85 |
+
}
|
86 |
+
]
|
87 |
+
|
88 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
89 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
90 |
+
|
91 |
+
inputs = processor(
|
92 |
+
text=[text],
|
93 |
+
images=image_inputs,
|
94 |
+
videos=video_inputs,
|
95 |
+
padding=True,
|
96 |
+
return_tensors="pt",
|
97 |
+
).to(model.device)
|
98 |
+
|
99 |
+
with torch.no_grad():
|
100 |
+
generated_ids = model.generate(**inputs, max_new_tokens=256)
|
101 |
+
generated_ids_trimmed = [
|
102 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
103 |
+
]
|
104 |
+
output_text = processor.batch_decode(
|
105 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
106 |
+
)
|
107 |
+
|
108 |
+
return output_text[0]
|
109 |
+
|
110 |
+
def process_content(content):
|
111 |
+
if content is None:
|
112 |
+
return "Please upload an image or video file."
|
113 |
+
|
114 |
+
if content.name.lower().endswith(('.png', '.jpg', '.jpeg')):
|
115 |
+
return process_image(Image.open(content.name))
|
116 |
+
elif content.name.lower().endswith(('.mp4', '.avi', '.mov')):
|
117 |
+
return process_video(content.name)
|
118 |
+
else:
|
119 |
+
return "Unsupported file type. Please provide an image or video file."
|
120 |
+
|
121 |
+
# Gradio interface
|
122 |
+
iface = gr.Interface(
|
123 |
+
fn=process_content,
|
124 |
+
inputs=gr.File(label="Upload Image or Video"),
|
125 |
+
outputs="text",
|
126 |
+
title="Image and Video Description",
|
127 |
+
description="Upload an image or video to get a description.",
|
128 |
+
)
|
129 |
+
|
130 |
+
if __name__ == "__main__":
|
131 |
+
iface.launch()
|