Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import joblib
|
3 |
+
|
4 |
+
# load the model
|
5 |
+
model = joblib.load("Tesla_Elon_Regression_Model.pkl")
|
6 |
+
|
7 |
+
# Load the model information
|
8 |
+
model_info = joblib.load("model_info.pkl")
|
9 |
+
|
10 |
+
st.title("Predict developer paycheck")
|
11 |
+
st.write("Predict developer salaries based on a Stack Overflow dataset")
|
12 |
+
|
13 |
+
feature_values = {}
|
14 |
+
for feature in model_info["features"]:
|
15 |
+
if feature is "yearsCode" or feature is "yearsCodePro":
|
16 |
+
feature_values[feature] = st.number_input(f"Enter {feature}", min_value=0.0)
|
17 |
+
else:
|
18 |
+
feature_values[feature] = st.text_input(f"Enter {feature}")
|
19 |
+
|
20 |
+
if st.button("Predict Salary"):
|
21 |
+
input_features = [feature_values[feature] for feature in model_info["features"]]
|
22 |
+
prediction = model.predict([input_features])[0]
|
23 |
+
st.write(f"Predicted Stock Price: {prediction[0]}")
|