wifix199 commited on
Commit
7169380
·
verified ·
1 Parent(s): 3d4d93c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -60
app.py CHANGED
@@ -1,64 +1,38 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
60
  )
61
 
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
3
+
4
+ # Model name (use a specialized medical model for better results)
5
+ model_name = "microsoft/DialoGPT-medium"
6
+
7
+ # Load tokenizer and model
8
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
9
+ model = AutoModelForCausalLM.from_pretrained(model_name)
10
+
11
+ # Initialize the pipeline
12
+ chatbot_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
13
+
14
+ def generate_response(user_input):
15
+ # Generate a response using the model
16
+ responses = chatbot_pipeline(user_input, max_length=150, num_return_sequences=1)
17
+ response = responses[0]['generated_text']
18
+
19
+ # Optional: Post-process the response
20
+ return response.strip()
21
+
22
+ # Define the Gradio interface
23
+ iface = gr.Interface(
24
+ fn=generate_response,
25
+ inputs=gr.inputs.Textbox(lines=2, placeholder="Ask a medical question..."),
26
+ outputs="text",
27
+ title="AI Patient Interaction Chatbot",
28
+ description="Ask any health-related questions and get real-time answers.",
29
+ examples=[
30
+ ["What are the symptoms of diabetes?"],
31
+ ["How can I manage my hypertension?"],
32
+ ["What should I do if I have a headache?"],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  ],
34
+ theme="compact"
35
  )
36
 
37
+ # Launch the interface
38
+ iface.launch()