import gradio as gr from huggingface_hub import InferenceClient import os """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/en/guides/inference """ # Retrieve the Hugging Face token hf_token = os.environ.get("HF_TOKEN") if not hf_token: raise ValueError("Please set the HF_TOKEN environment variable with your Hugging Face API token.") # Initialize the InferenceClient with a correct model client = InferenceClient("models/meta-llama/Llama-3.2-1B", token=hf_token) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for user_input, assistant_response in history: if user_input: messages.append({"role": "user", "content": user_input}) if assistant_response: messages.append({"role": "assistant", "content": assistant_response}) messages.append({"role": "user", "content": message}) response = "" # Start the chat completion try: for msg in client.chat_completion( messages=messages, max_new_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = msg.delta.get("content", "") response += token yield response except Exception as e: yield f"Error during inference: {e}" """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( fn=respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=1024, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.01, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.01, label="Top-p (nucleus sampling)", ), ], title="Chat with Llama 2", description="A chat interface using Llama 2 model via Hugging Face Inference API.", ) if __name__ == "__main__": demo.launch()