from huggingface_hub import InferenceClient import gradio as gr client = InferenceClient(model="mistralai/Mixtral-8x7B-Instruct-v0.1") def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def should_stop_generation(output, stop_patterns): for pattern in stop_patterns: if pattern in output: return True return False async def generate( prompt, history, temperature=0.7, max_new_tokens=1024, top_p=0.95, repetition_penalty=1.0, stop_patterns=None, max_loops=5 ): if stop_patterns is None: stop_patterns = ["\n\n", ".", "The end", "Thank you"] temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = format_prompt(prompt, history) output = "" loop_count = 0 while loop_count < max_loops: try: stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) async for response in stream: output += response.token.text yield output if should_stop_generation(output, stop_patterns): return # Stop if end pattern is detected loop_count += 1 # Increment loop count to avoid infinite loops # If the text isn't complete, use the last segment as a new prompt formatted_prompt = format_prompt(output.split("\n")[-1], history) except Exception as e: print(f"Error during streaming: {e}") break # Non-streaming fallback try: response = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, return_full_text=False) output = response # Use response as a string if streaming failed if not should_stop_generation(output, stop_patterns): output += " [Additional text required to complete the response.]" yield output except Exception as e: print(f"Error during non-streaming generation: {e}") mychatbot = gr.Chatbot( avatar_images=["./user.png", "./botm.png"], bubble_full_width=False, show_label=False, show_copy_button=True, likeable=True, ) demo = gr.ChatInterface(fn=generate, chatbot=mychatbot, title="Mixtral 8x7b AI Chatbot By wifix199", retry_btn=None, undo_btn=None ) demo.queue().launch(show_api=False)