wifix199 commited on
Commit
5d4cc61
1 Parent(s): cc63412

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -51
app.py CHANGED
@@ -2,65 +2,20 @@ import torch
2
  from diffusers import StableDiffusionPipeline
3
  import gradio as gr
4
 
5
- # Load the model
6
  model_id = "SG161222/RealVisXL_V4.0"
7
  pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
8
  pipe.to("cpu") # Use "cuda" if GPU is available
9
 
10
- # Define placeholder functions and variables
11
- DEFAULT_STYLE_NAME = "default"
12
- default_negative = ""
13
- NUM_IMAGES_PER_PROMPT = 1
14
-
15
- def check_text(prompt, negative_prompt):
16
- # Implement your text check logic here
17
- return False
18
-
19
- def apply_style(style, prompt, negative_prompt):
20
- # Implement your style application logic here
21
- return prompt, negative_prompt
22
-
23
- def randomize_seed_fn(seed, randomize_seed):
24
- # Implement your seed randomization logic here
25
- return seed
26
-
27
- def save_image(image):
28
- # Implement your image saving logic here
29
  return image
 
 
 
30
 
31
- def generate_image(prompt, negative_prompt="", use_negative_prompt=False, style=DEFAULT_STYLE_NAME, seed=0, width=1024, height=1024, guidance_scale=3, randomize_seed=False, use_resolution_binning=True, progress=gr.Progress(track_tqdm=True)):
32
- if check_text(prompt, negative_prompt):
33
- raise ValueError("Prompt contains restricted words.")
34
-
35
- prompt, negative_prompt = apply_style(style, prompt, negative_prompt)
36
- seed = int(randomize_seed_fn(seed, randomize_seed))
37
- generator = torch.Generator().manual_seed(seed)
38
-
39
- if not use_negative_prompt:
40
- negative_prompt = ""
41
- negative_prompt += default_negative
42
 
43
- options = {
44
- "prompt": prompt,
45
- "negative_prompt": negative_prompt,
46
- "width": width,
47
- "height": height,
48
- "guidance_scale": guidance_scale,
49
- "num_inference_steps": 25,
50
- "generator": generator,
51
- "num_images_per_prompt": NUM_IMAGES_PER_PROMPT,
52
- "use_resolution_binning": use_resolution_binning,
53
- "output_type": "pil",
54
- }
55
-
56
- images = pipe(**options).images
57
 
58
- image_paths = [save_image(img) for img in images]
59
- return image_paths, seed
60
 
61
- def chatbot(prompt):
62
- # Generate the image based on the user's input
63
- image = generate_image(prompt)
64
  return image
65
 
66
  # Create the Gradio interface
@@ -73,4 +28,4 @@ interface = gr.Interface(
73
  )
74
 
75
  # Launch the interface
76
- interface.launch()
 
2
  from diffusers import StableDiffusionPipeline
3
  import gradio as gr
4
 
 
5
  model_id = "SG161222/RealVisXL_V4.0"
6
  pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
7
  pipe.to("cpu") # Use "cuda" if GPU is available
8
 
9
+ def generate_image(prompt):
10
+ image = pipe(prompt).images[0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  return image
12
+ def chatbot(prompt):
13
+ # Generate the image based on the user's input
14
+ image = generate_image(prompt)
15
 
 
 
 
 
 
 
 
 
 
 
 
16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
 
 
18
 
 
 
 
19
  return image
20
 
21
  # Create the Gradio interface
 
28
  )
29
 
30
  # Launch the interface
31
+ interface.launch()