File size: 87,656 Bytes
8896a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755


<!DOCTYPE html>
<html class="writer-html5" lang="en" >
<head>
  <meta charset="utf-8" />
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0" />
  
  <title>dscript.commands.train &mdash; D-SCRIPT v1.0-beta documentation</title>
  

  
  <link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
  <link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />

  
  

  
  

  

  
  <!--[if lt IE 9]>
    <script src="../../../_static/js/html5shiv.min.js"></script>
  <![endif]-->
  
    
      <script type="text/javascript" id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
        <script src="../../../_static/jquery.js"></script>
        <script src="../../../_static/underscore.js"></script>
        <script src="../../../_static/doctools.js"></script>
    
    <script type="text/javascript" src="../../../_static/js/theme.js"></script>

    
    <link rel="index" title="Index" href="../../../genindex.html" />
    <link rel="search" title="Search" href="../../../search.html" /> 
</head>

<body class="wy-body-for-nav">

   
  <div class="wy-grid-for-nav">
    
    <nav data-toggle="wy-nav-shift" class="wy-nav-side">
      <div class="wy-side-scroll">
        <div class="wy-side-nav-search" >
          

          
            <a href="../../../index.html" class="icon icon-home"> D-SCRIPT
          

          
          </a>

          
            
            
          

          
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>

          
        </div>

        
        <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
          
            
            
              
            
            
              <ul>
<li class="toctree-l1"><a class="reference internal" href="../../../installation.html">Installation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../usage.html">Usage</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../data.html">Data</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../api/index.html">API</a></li>
</ul>

            
          
        </div>
        
      </div>
    </nav>

    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">

      
      <nav class="wy-nav-top" aria-label="top navigation">
        
          <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
          <a href="../../../index.html">D-SCRIPT</a>
        
      </nav>


      <div class="wy-nav-content">
        
        <div class="rst-content">
        
          

















<div role="navigation" aria-label="breadcrumbs navigation">

  <ul class="wy-breadcrumbs">
    
      <li><a href="../../../index.html" class="icon icon-home"></a> &raquo;</li>
        
          <li><a href="../../index.html">Module code</a> &raquo;</li>
        
      <li>dscript.commands.train</li>
    
    
      <li class="wy-breadcrumbs-aside">
        
      </li>
    
  </ul>

  
  <hr/>
</div>
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <h1>Source code for dscript.commands.train</h1><div class="highlight"><pre>
<span></span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">Train a new model.</span>
<span class="sd">&quot;&quot;&quot;</span>

<span class="kn">import</span> <span class="nn">sys</span>
<span class="kn">import</span> <span class="nn">argparse</span>
<span class="kn">import</span> <span class="nn">h5py</span>
<span class="kn">import</span> <span class="nn">datetime</span>
<span class="kn">import</span> <span class="nn">subprocess</span> <span class="k">as</span> <span class="nn">sp</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span>
<span class="kn">import</span> <span class="nn">gzip</span> <span class="k">as</span> <span class="nn">gz</span>
<span class="kn">from</span> <span class="nn">tqdm</span> <span class="kn">import</span> <span class="n">tqdm</span>

<span class="kn">import</span> <span class="nn">torch</span>
<span class="kn">import</span> <span class="nn">torch.nn</span> <span class="k">as</span> <span class="nn">nn</span>
<span class="kn">import</span> <span class="nn">torch.nn.functional</span> <span class="k">as</span> <span class="nn">F</span>
<span class="kn">import</span> <span class="nn">torch.optim</span> <span class="k">as</span> <span class="nn">optim</span>
<span class="kn">from</span> <span class="nn">torch.autograd</span> <span class="kn">import</span> <span class="n">Variable</span>
<span class="kn">from</span> <span class="nn">torch.utils.data</span> <span class="kn">import</span> <span class="n">IterableDataset</span><span class="p">,</span> <span class="n">DataLoader</span>
<span class="kn">from</span> <span class="nn">sklearn.metrics</span> <span class="kn">import</span> <span class="n">average_precision_score</span> <span class="k">as</span> <span class="n">average_precision</span>

<span class="kn">import</span> <span class="nn">dscript</span>
<span class="kn">from</span> <span class="nn">dscript.utils</span> <span class="kn">import</span> <span class="n">PairedDataset</span><span class="p">,</span> <span class="n">collate_paired_sequences</span>
<span class="kn">from</span> <span class="nn">dscript.models.embedding</span> <span class="kn">import</span> <span class="p">(</span>
    <span class="n">IdentityEmbed</span><span class="p">,</span>
    <span class="n">FullyConnectedEmbed</span><span class="p">,</span>
<span class="p">)</span>
<span class="kn">from</span> <span class="nn">dscript.models.contact</span> <span class="kn">import</span> <span class="n">ContactCNN</span>
<span class="kn">from</span> <span class="nn">dscript.models.interaction</span> <span class="kn">import</span> <span class="n">ModelInteraction</span>


<span class="k">def</span> <span class="nf">add_args</span><span class="p">(</span><span class="n">parser</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">    Create parser for command line utility.</span>

<span class="sd">    :meta private:</span>
<span class="sd">    &quot;&quot;&quot;</span>

    <span class="n">data_grp</span> <span class="o">=</span> <span class="n">parser</span><span class="o">.</span><span class="n">add_argument_group</span><span class="p">(</span><span class="s2">&quot;Data&quot;</span><span class="p">)</span>
    <span class="n">proj_grp</span> <span class="o">=</span> <span class="n">parser</span><span class="o">.</span><span class="n">add_argument_group</span><span class="p">(</span><span class="s2">&quot;Projection Module&quot;</span><span class="p">)</span>
    <span class="n">contact_grp</span> <span class="o">=</span> <span class="n">parser</span><span class="o">.</span><span class="n">add_argument_group</span><span class="p">(</span><span class="s2">&quot;Contact Module&quot;</span><span class="p">)</span>
    <span class="n">inter_grp</span> <span class="o">=</span> <span class="n">parser</span><span class="o">.</span><span class="n">add_argument_group</span><span class="p">(</span><span class="s2">&quot;Interaction Module&quot;</span><span class="p">)</span>
    <span class="n">train_grp</span> <span class="o">=</span> <span class="n">parser</span><span class="o">.</span><span class="n">add_argument_group</span><span class="p">(</span><span class="s2">&quot;Training&quot;</span><span class="p">)</span>
    <span class="n">misc_grp</span> <span class="o">=</span> <span class="n">parser</span><span class="o">.</span><span class="n">add_argument_group</span><span class="p">(</span><span class="s2">&quot;Output and Device&quot;</span><span class="p">)</span>

    <span class="c1"># Data</span>
    <span class="n">data_grp</span><span class="o">.</span><span class="n">add_argument</span><span class="p">(</span><span class="s2">&quot;--train&quot;</span><span class="p">,</span> <span class="n">help</span><span class="o">=</span><span class="s2">&quot;Training data&quot;</span><span class="p">,</span> <span class="n">required</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
    <span class="n">data_grp</span><span class="o">.</span><span class="n">add_argument</span><span class="p">(</span><span class="s2">&quot;--val&quot;</span><span class="p">,</span> <span class="n">help</span><span class="o">=</span><span class="s2">&quot;Validation data&quot;</span><span class="p">,</span> <span class="n">required</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
    <span class="n">data_grp</span><span class="o">.</span><span class="n">add_argument</span><span class="p">(</span><span class="s2">&quot;--embedding&quot;</span><span class="p">,</span> <span class="n">help</span><span class="o">=</span><span class="s2">&quot;h5 file with embedded sequences&quot;</span><span class="p">,</span> <span class="n">required</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
    <span class="n">data_grp</span><span class="o">.</span><span class="n">add_argument</span><span class="p">(</span>
        <span class="s2">&quot;--augment&quot;</span><span class="p">,</span>
        <span class="n">action</span><span class="o">=</span><span class="s2">&quot;store_true&quot;</span><span class="p">,</span>
        <span class="n">help</span><span class="o">=</span><span class="s2">&quot;Set flag to augment data by adding (B A) for all pairs (A B)&quot;</span><span class="p">,</span>
    <span class="p">)</span>

    <span class="c1"># Embedding model</span>
    <span class="n">proj_grp</span><span class="o">.</span><span class="n">add_argument</span><span class="p">(</span>
        <span class="s2">&quot;--projection-dim&quot;</span><span class="p">,</span>
        <span class="nb">type</span><span class="o">=</span><span class="nb">int</span><span class="p">,</span>
        <span class="n">default</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span>
        <span class="n">help</span><span class="o">=</span><span class="s2">&quot;Dimension of embedding projection layer (default: 100)&quot;</span><span class="p">,</span>
    <span class="p">)</span>
    <span class="n">proj_grp</span><span class="o">.</span><span class="n">add_argument</span><span class="p">(</span>
        <span class="s2">&quot;--dropout-p&quot;</span><span class="p">,</span>
        <span class="nb">type</span><span class="o">=</span><span class="nb">float</span><span class="p">,</span>
        <span class="n">default</span><span class="o">=</span><span class="mf">0.5</span><span class="p">,</span>
        <span class="n">help</span><span class="o">=</span><span class="s2">&quot;Parameter p for embedding dropout layer (default: 0.5)&quot;</span><span class="p">,</span>
    <span class="p">)</span>

    <span class="c1"># Contact model</span>
    <span class="n">contact_grp</span><span class="o">.</span><span class="n">add_argument</span><span class="p">(</span>
        <span class="s2">&quot;--hidden-dim&quot;</span><span class="p">,</span>
        <span class="nb">type</span><span class="o">=</span><span class="nb">int</span><span class="p">,</span>
        <span class="n">default</span><span class="o">=</span><span class="mi">50</span><span class="p">,</span>
        <span class="n">help</span><span class="o">=</span><span class="s2">&quot;Number of hidden units for comparison layer in contact prediction (default: 50)&quot;</span><span class="p">,</span>
    <span class="p">)</span>
    <span class="n">contact_grp</span><span class="o">.</span><span class="n">add_argument</span><span class="p">(</span>
        <span class="s2">&quot;--kernel-width&quot;</span><span class="p">,</span>
        <span class="nb">type</span><span class="o">=</span><span class="nb">int</span><span class="p">,</span>
        <span class="n">default</span><span class="o">=</span><span class="mi">7</span><span class="p">,</span>
        <span class="n">help</span><span class="o">=</span><span class="s2">&quot;Width of convolutional filter for contact prediction (default: 7)&quot;</span><span class="p">,</span>
    <span class="p">)</span>

    <span class="c1"># Interaction Model</span>
    <span class="n">inter_grp</span><span class="o">.</span><span class="n">add_argument</span><span class="p">(</span>
        <span class="s2">&quot;--use-w&quot;</span><span class="p">,</span>
        <span class="n">action</span><span class="o">=</span><span class="s2">&quot;store_true&quot;</span><span class="p">,</span>
        <span class="n">help</span><span class="o">=</span><span class="s2">&quot;Use weight matrix in interaction prediction model&quot;</span><span class="p">,</span>
    <span class="p">)</span>
    <span class="n">inter_grp</span><span class="o">.</span><span class="n">add_argument</span><span class="p">(</span>
        <span class="s2">&quot;--pool-width&quot;</span><span class="p">,</span>
        <span class="nb">type</span><span class="o">=</span><span class="nb">int</span><span class="p">,</span>
        <span class="n">default</span><span class="o">=</span><span class="mi">9</span><span class="p">,</span>
        <span class="n">help</span><span class="o">=</span><span class="s2">&quot;Size of max-pool in interaction model (default: 9)&quot;</span><span class="p">,</span>
    <span class="p">)</span>

    <span class="c1"># Training</span>
    <span class="n">train_grp</span><span class="o">.</span><span class="n">add_argument</span><span class="p">(</span>
        <span class="s2">&quot;--negative-ratio&quot;</span><span class="p">,</span>
        <span class="nb">type</span><span class="o">=</span><span class="nb">int</span><span class="p">,</span>
        <span class="n">default</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span>
        <span class="n">help</span><span class="o">=</span><span class="s2">&quot;Number of negative training samples for each positive training sample (default: 10)&quot;</span><span class="p">,</span>
    <span class="p">)</span>
    <span class="n">train_grp</span><span class="o">.</span><span class="n">add_argument</span><span class="p">(</span>
        <span class="s2">&quot;--epoch-scale&quot;</span><span class="p">,</span>
        <span class="nb">type</span><span class="o">=</span><span class="nb">int</span><span class="p">,</span>
        <span class="n">default</span><span class="o">=</span><span class="mi">5</span><span class="p">,</span>
        <span class="n">help</span><span class="o">=</span><span class="s2">&quot;Report heldout performance every this many epochs (default: 5)&quot;</span><span class="p">,</span>
    <span class="p">)</span>
    <span class="n">train_grp</span><span class="o">.</span><span class="n">add_argument</span><span class="p">(</span><span class="s2">&quot;--num-epochs&quot;</span><span class="p">,</span> <span class="nb">type</span><span class="o">=</span><span class="nb">int</span><span class="p">,</span> <span class="n">default</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> <span class="n">help</span><span class="o">=</span><span class="s2">&quot;Number of epochs (default: 100)&quot;</span><span class="p">)</span>
    <span class="n">train_grp</span><span class="o">.</span><span class="n">add_argument</span><span class="p">(</span><span class="s2">&quot;--batch-size&quot;</span><span class="p">,</span> <span class="nb">type</span><span class="o">=</span><span class="nb">int</span><span class="p">,</span> <span class="n">default</span><span class="o">=</span><span class="mi">25</span><span class="p">,</span> <span class="n">help</span><span class="o">=</span><span class="s2">&quot;Minibatch size (default: 25)&quot;</span><span class="p">)</span>
    <span class="n">train_grp</span><span class="o">.</span><span class="n">add_argument</span><span class="p">(</span><span class="s2">&quot;--weight-decay&quot;</span><span class="p">,</span> <span class="nb">type</span><span class="o">=</span><span class="nb">float</span><span class="p">,</span> <span class="n">default</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">help</span><span class="o">=</span><span class="s2">&quot;L2 regularization (default: 0)&quot;</span><span class="p">)</span>
    <span class="n">train_grp</span><span class="o">.</span><span class="n">add_argument</span><span class="p">(</span><span class="s2">&quot;--lr&quot;</span><span class="p">,</span> <span class="nb">type</span><span class="o">=</span><span class="nb">float</span><span class="p">,</span> <span class="n">default</span><span class="o">=</span><span class="mf">0.001</span><span class="p">,</span> <span class="n">help</span><span class="o">=</span><span class="s2">&quot;Learning rate (default: 0.001)&quot;</span><span class="p">)</span>
    <span class="n">train_grp</span><span class="o">.</span><span class="n">add_argument</span><span class="p">(</span>
        <span class="s2">&quot;--lambda&quot;</span><span class="p">,</span>
        <span class="n">dest</span><span class="o">=</span><span class="s2">&quot;lambda_&quot;</span><span class="p">,</span>
        <span class="nb">type</span><span class="o">=</span><span class="nb">float</span><span class="p">,</span>
        <span class="n">default</span><span class="o">=</span><span class="mf">0.35</span><span class="p">,</span>
        <span class="n">help</span><span class="o">=</span><span class="s2">&quot;Weight on the similarity objective (default: 0.35)&quot;</span><span class="p">,</span>
    <span class="p">)</span>

    <span class="c1"># Output</span>
    <span class="n">misc_grp</span><span class="o">.</span><span class="n">add_argument</span><span class="p">(</span><span class="s2">&quot;-o&quot;</span><span class="p">,</span> <span class="s2">&quot;--outfile&quot;</span><span class="p">,</span> <span class="n">help</span><span class="o">=</span><span class="s2">&quot;Output file path (default: stdout)&quot;</span><span class="p">)</span>
    <span class="n">misc_grp</span><span class="o">.</span><span class="n">add_argument</span><span class="p">(</span><span class="s2">&quot;--save-prefix&quot;</span><span class="p">,</span> <span class="n">help</span><span class="o">=</span><span class="s2">&quot;Path prefix for saving models&quot;</span><span class="p">)</span>
    <span class="n">misc_grp</span><span class="o">.</span><span class="n">add_argument</span><span class="p">(</span><span class="s2">&quot;-d&quot;</span><span class="p">,</span> <span class="s2">&quot;--device&quot;</span><span class="p">,</span> <span class="nb">type</span><span class="o">=</span><span class="nb">int</span><span class="p">,</span> <span class="n">default</span><span class="o">=-</span><span class="mi">1</span><span class="p">,</span> <span class="n">help</span><span class="o">=</span><span class="s2">&quot;Compute device to use&quot;</span><span class="p">)</span>
    <span class="n">misc_grp</span><span class="o">.</span><span class="n">add_argument</span><span class="p">(</span><span class="s2">&quot;--checkpoint&quot;</span><span class="p">,</span> <span class="n">help</span><span class="o">=</span><span class="s2">&quot;Checkpoint model to start training from&quot;</span><span class="p">)</span>

    <span class="k">return</span> <span class="n">parser</span>


<div class="viewcode-block" id="predict_interaction"><a class="viewcode-back" href="../../../api/dscript.commands.html#dscript.commands.train.predict_interaction">[docs]</a><span class="k">def</span> <span class="nf">predict_interaction</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">n0</span><span class="p">,</span> <span class="n">n1</span><span class="p">,</span> <span class="n">tensors</span><span class="p">,</span> <span class="n">use_cuda</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">    Predict whether a list of protein pairs will interact.</span>

<span class="sd">    :param model: Model to be trained</span>
<span class="sd">    :type model: dscript.models.interaction.ModelInteraction</span>
<span class="sd">    :param n0: First protein names</span>
<span class="sd">    :type n0: list[str]</span>
<span class="sd">    :param n1: Second protein names</span>
<span class="sd">    :type n1: list[str]</span>
<span class="sd">    :param tensors: Dictionary of protein names to embeddings</span>
<span class="sd">    :type tensors: dict[str, torch.Tensor]</span>
<span class="sd">    :param use_cuda: Whether to use GPU</span>
<span class="sd">    :type use_cuda: bool</span>
<span class="sd">    &quot;&quot;&quot;</span>

    <span class="n">b</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">n0</span><span class="p">)</span>

    <span class="n">p_hat</span> <span class="o">=</span> <span class="p">[]</span>
    <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">b</span><span class="p">):</span>
        <span class="n">z_a</span> <span class="o">=</span> <span class="n">tensors</span><span class="p">[</span><span class="n">n0</span><span class="p">[</span><span class="n">i</span><span class="p">]]</span>
        <span class="n">z_b</span> <span class="o">=</span> <span class="n">tensors</span><span class="p">[</span><span class="n">n1</span><span class="p">[</span><span class="n">i</span><span class="p">]]</span>
        <span class="k">if</span> <span class="n">use_cuda</span><span class="p">:</span>
            <span class="n">z_a</span> <span class="o">=</span> <span class="n">z_a</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span>
            <span class="n">z_b</span> <span class="o">=</span> <span class="n">z_b</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span>

        <span class="n">p_hat</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">z_a</span><span class="p">,</span> <span class="n">z_b</span><span class="p">))</span>
    <span class="n">p_hat</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">stack</span><span class="p">(</span><span class="n">p_hat</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">p_hat</span></div>


<div class="viewcode-block" id="predict_cmap_interaction"><a class="viewcode-back" href="../../../api/dscript.commands.html#dscript.commands.train.predict_cmap_interaction">[docs]</a><span class="k">def</span> <span class="nf">predict_cmap_interaction</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">n0</span><span class="p">,</span> <span class="n">n1</span><span class="p">,</span> <span class="n">tensors</span><span class="p">,</span> <span class="n">use_cuda</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">    Predict whether a list of protein pairs will interact, as well as their contact map.</span>

<span class="sd">    :param model: Model to be trained</span>
<span class="sd">    :type model: dscript.models.interaction.ModelInteraction</span>
<span class="sd">    :param n0: First protein names</span>
<span class="sd">    :type n0: list[str]</span>
<span class="sd">    :param n1: Second protein names</span>
<span class="sd">    :type n1: list[str]</span>
<span class="sd">    :param tensors: Dictionary of protein names to embeddings</span>
<span class="sd">    :type tensors: dict[str, torch.Tensor]</span>
<span class="sd">    :param use_cuda: Whether to use GPU</span>
<span class="sd">    :type use_cuda: bool</span>
<span class="sd">    &quot;&quot;&quot;</span>

    <span class="n">b</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">n0</span><span class="p">)</span>

    <span class="n">p_hat</span> <span class="o">=</span> <span class="p">[]</span>
    <span class="n">c_map_mag</span> <span class="o">=</span> <span class="p">[]</span>
    <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">b</span><span class="p">):</span>
        <span class="n">z_a</span> <span class="o">=</span> <span class="n">tensors</span><span class="p">[</span><span class="n">n0</span><span class="p">[</span><span class="n">i</span><span class="p">]]</span>
        <span class="n">z_b</span> <span class="o">=</span> <span class="n">tensors</span><span class="p">[</span><span class="n">n1</span><span class="p">[</span><span class="n">i</span><span class="p">]]</span>
        <span class="k">if</span> <span class="n">use_cuda</span><span class="p">:</span>
            <span class="n">z_a</span> <span class="o">=</span> <span class="n">z_a</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span>
            <span class="n">z_b</span> <span class="o">=</span> <span class="n">z_b</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span>

        <span class="n">cm</span><span class="p">,</span> <span class="n">ph</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">map_predict</span><span class="p">(</span><span class="n">z_a</span><span class="p">,</span> <span class="n">z_b</span><span class="p">)</span>
        <span class="n">p_hat</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">ph</span><span class="p">)</span>
        <span class="n">c_map_mag</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">cm</span><span class="p">))</span>
    <span class="n">p_hat</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">stack</span><span class="p">(</span><span class="n">p_hat</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
    <span class="n">c_map_mag</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">stack</span><span class="p">(</span><span class="n">c_map_mag</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">c_map_mag</span><span class="p">,</span> <span class="n">p_hat</span></div>


<div class="viewcode-block" id="interaction_grad"><a class="viewcode-back" href="../../../api/dscript.commands.html#dscript.commands.train.interaction_grad">[docs]</a><span class="k">def</span> <span class="nf">interaction_grad</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">n0</span><span class="p">,</span> <span class="n">n1</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">tensors</span><span class="p">,</span> <span class="n">use_cuda</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="mf">0.35</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">    Compute gradient and backpropagate loss for a batch.</span>

<span class="sd">    :param model: Model to be trained</span>
<span class="sd">    :type model: dscript.models.interaction.ModelInteraction</span>
<span class="sd">    :param n0: First protein names</span>
<span class="sd">    :type n0: list[str]</span>
<span class="sd">    :param n1: Second protein names</span>
<span class="sd">    :type n1: list[str]</span>
<span class="sd">    :param y: Interaction labels</span>
<span class="sd">    :type y: torch.Tensor</span>
<span class="sd">    :param tensors: Dictionary of protein names to embeddings</span>
<span class="sd">    :type tensors: dict[str, torch.Tensor]</span>
<span class="sd">    :param use_cuda: Whether to use GPU</span>
<span class="sd">    :type use_cuda: bool</span>
<span class="sd">    :param weight: Weight on the contact map magnitude objective. BCE loss is :math:`1 - \\text{weight}`.</span>
<span class="sd">    :type weight: float</span>

<span class="sd">    :return: (Loss, number correct, mean square error, batch size)</span>
<span class="sd">    :rtype: (torch.Tensor, int, torch.Tensor, int)</span>
<span class="sd">    &quot;&quot;&quot;</span>

    <span class="n">c_map_mag</span><span class="p">,</span> <span class="n">p_hat</span> <span class="o">=</span> <span class="n">predict_cmap_interaction</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">n0</span><span class="p">,</span> <span class="n">n1</span><span class="p">,</span> <span class="n">tensors</span><span class="p">,</span> <span class="n">use_cuda</span><span class="p">)</span>
    <span class="k">if</span> <span class="n">use_cuda</span><span class="p">:</span>
        <span class="n">y</span> <span class="o">=</span> <span class="n">y</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span>
    <span class="n">y</span> <span class="o">=</span> <span class="n">Variable</span><span class="p">(</span><span class="n">y</span><span class="p">)</span>

    <span class="n">bce_loss</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">binary_cross_entropy</span><span class="p">(</span><span class="n">p_hat</span><span class="o">.</span><span class="n">float</span><span class="p">(),</span> <span class="n">y</span><span class="o">.</span><span class="n">float</span><span class="p">())</span>
    <span class="n">cmap_loss</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">c_map_mag</span><span class="p">)</span>
    <span class="n">loss</span> <span class="o">=</span> <span class="p">(</span><span class="n">weight</span> <span class="o">*</span> <span class="n">bce_loss</span><span class="p">)</span> <span class="o">+</span> <span class="p">((</span><span class="mi">1</span> <span class="o">-</span> <span class="n">weight</span><span class="p">)</span> <span class="o">*</span> <span class="n">cmap_loss</span><span class="p">)</span>
    <span class="n">b</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">p_hat</span><span class="p">)</span>

    <span class="c1"># backprop loss</span>
    <span class="n">loss</span><span class="o">.</span><span class="n">backward</span><span class="p">()</span>

    <span class="k">if</span> <span class="n">use_cuda</span><span class="p">:</span>
        <span class="n">y</span> <span class="o">=</span> <span class="n">y</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span>
        <span class="n">p_hat</span> <span class="o">=</span> <span class="n">p_hat</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span>

    <span class="k">with</span> <span class="n">torch</span><span class="o">.</span><span class="n">no_grad</span><span class="p">():</span>
        <span class="n">guess_cutoff</span> <span class="o">=</span> <span class="mf">0.5</span>
        <span class="n">p_hat</span> <span class="o">=</span> <span class="n">p_hat</span><span class="o">.</span><span class="n">float</span><span class="p">()</span>
        <span class="n">p_guess</span> <span class="o">=</span> <span class="p">(</span><span class="n">guess_cutoff</span> <span class="o">*</span> <span class="n">torch</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="n">b</span><span class="p">)</span> <span class="o">&lt;</span> <span class="n">p_hat</span><span class="p">)</span><span class="o">.</span><span class="n">float</span><span class="p">()</span>
        <span class="n">y</span> <span class="o">=</span> <span class="n">y</span><span class="o">.</span><span class="n">float</span><span class="p">()</span>
        <span class="n">correct</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">p_guess</span> <span class="o">==</span> <span class="n">y</span><span class="p">)</span><span class="o">.</span><span class="n">item</span><span class="p">()</span>
        <span class="n">mse</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">mean</span><span class="p">((</span><span class="n">y</span><span class="o">.</span><span class="n">float</span><span class="p">()</span> <span class="o">-</span> <span class="n">p_hat</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">item</span><span class="p">()</span>

    <span class="k">return</span> <span class="n">loss</span><span class="p">,</span> <span class="n">correct</span><span class="p">,</span> <span class="n">mse</span><span class="p">,</span> <span class="n">b</span></div>


<div class="viewcode-block" id="interaction_eval"><a class="viewcode-back" href="../../../api/dscript.commands.html#dscript.commands.train.interaction_eval">[docs]</a><span class="k">def</span> <span class="nf">interaction_eval</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">test_iterator</span><span class="p">,</span> <span class="n">tensors</span><span class="p">,</span> <span class="n">use_cuda</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">    Evaluate test data set performance.</span>

<span class="sd">    :param model: Model to be trained</span>
<span class="sd">    :type model: dscript.models.interaction.ModelInteraction</span>
<span class="sd">    :param test_iterator: Test data iterator</span>
<span class="sd">    :type test_iterator: torch.utils.data.DataLoader</span>
<span class="sd">    :param tensors: Dictionary of protein names to embeddings</span>
<span class="sd">    :type tensors: dict[str, torch.Tensor]</span>
<span class="sd">    :param use_cuda: Whether to use GPU</span>
<span class="sd">    :type use_cuda: bool</span>

<span class="sd">    :return: (Loss, number correct, mean square error, precision, recall, F1 Score, AUPR)</span>
<span class="sd">    :rtype: (torch.Tensor, int, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor)</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="n">p_hat</span> <span class="o">=</span> <span class="p">[]</span>
    <span class="n">true_y</span> <span class="o">=</span> <span class="p">[]</span>

    <span class="k">for</span> <span class="n">n0</span><span class="p">,</span> <span class="n">n1</span><span class="p">,</span> <span class="n">y</span> <span class="ow">in</span> <span class="n">test_iterator</span><span class="p">:</span>
        <span class="n">p_hat</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">predict_interaction</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">n0</span><span class="p">,</span> <span class="n">n1</span><span class="p">,</span> <span class="n">tensors</span><span class="p">,</span> <span class="n">use_cuda</span><span class="p">))</span>
        <span class="n">true_y</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">y</span><span class="p">)</span>

    <span class="n">y</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">(</span><span class="n">true_y</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
    <span class="n">p_hat</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">(</span><span class="n">p_hat</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>

    <span class="k">if</span> <span class="n">use_cuda</span><span class="p">:</span>
        <span class="n">y</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span>
        <span class="n">p_hat</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">([</span><span class="n">x</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">p_hat</span><span class="p">])</span>
        <span class="n">p_hat</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span>

    <span class="n">loss</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">binary_cross_entropy</span><span class="p">(</span><span class="n">p_hat</span><span class="o">.</span><span class="n">float</span><span class="p">(),</span> <span class="n">y</span><span class="o">.</span><span class="n">float</span><span class="p">())</span><span class="o">.</span><span class="n">item</span><span class="p">()</span>
    <span class="n">b</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">y</span><span class="p">)</span>

    <span class="k">with</span> <span class="n">torch</span><span class="o">.</span><span class="n">no_grad</span><span class="p">():</span>
        <span class="n">guess_cutoff</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">([</span><span class="mf">0.5</span><span class="p">])</span><span class="o">.</span><span class="n">float</span><span class="p">()</span>
        <span class="n">p_hat</span> <span class="o">=</span> <span class="n">p_hat</span><span class="o">.</span><span class="n">float</span><span class="p">()</span>
        <span class="n">y</span> <span class="o">=</span> <span class="n">y</span><span class="o">.</span><span class="n">float</span><span class="p">()</span>
        <span class="n">p_guess</span> <span class="o">=</span> <span class="p">(</span><span class="n">guess_cutoff</span> <span class="o">*</span> <span class="n">torch</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="n">b</span><span class="p">)</span> <span class="o">&lt;</span> <span class="n">p_hat</span><span class="p">)</span><span class="o">.</span><span class="n">float</span><span class="p">()</span>
        <span class="n">correct</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">p_guess</span> <span class="o">==</span> <span class="n">y</span><span class="p">)</span><span class="o">.</span><span class="n">item</span><span class="p">()</span>
        <span class="n">mse</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">mean</span><span class="p">((</span><span class="n">y</span><span class="o">.</span><span class="n">float</span><span class="p">()</span> <span class="o">-</span> <span class="n">p_hat</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">item</span><span class="p">()</span>

        <span class="n">tp</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">y</span> <span class="o">*</span> <span class="n">p_hat</span><span class="p">)</span><span class="o">.</span><span class="n">item</span><span class="p">()</span>
        <span class="n">pr</span> <span class="o">=</span> <span class="n">tp</span> <span class="o">/</span> <span class="n">torch</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">p_hat</span><span class="p">)</span><span class="o">.</span><span class="n">item</span><span class="p">()</span>
        <span class="n">re</span> <span class="o">=</span> <span class="n">tp</span> <span class="o">/</span> <span class="n">torch</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">y</span><span class="p">)</span><span class="o">.</span><span class="n">item</span><span class="p">()</span>
        <span class="n">f1</span> <span class="o">=</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">pr</span> <span class="o">*</span> <span class="n">re</span> <span class="o">/</span> <span class="p">(</span><span class="n">pr</span> <span class="o">+</span> <span class="n">re</span><span class="p">)</span>

    <span class="n">y</span> <span class="o">=</span> <span class="n">y</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span>
    <span class="n">p_hat</span> <span class="o">=</span> <span class="n">p_hat</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span>

    <span class="n">aupr</span> <span class="o">=</span> <span class="n">average_precision</span><span class="p">(</span><span class="n">y</span><span class="p">,</span> <span class="n">p_hat</span><span class="p">)</span>

    <span class="k">return</span> <span class="n">loss</span><span class="p">,</span> <span class="n">correct</span><span class="p">,</span> <span class="n">mse</span><span class="p">,</span> <span class="n">pr</span><span class="p">,</span> <span class="n">re</span><span class="p">,</span> <span class="n">f1</span><span class="p">,</span> <span class="n">aupr</span></div>


<span class="k">def</span> <span class="nf">main</span><span class="p">(</span><span class="n">args</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">    Run training from arguments.</span>

<span class="sd">    :meta private:</span>
<span class="sd">    &quot;&quot;&quot;</span>

    <span class="n">output</span> <span class="o">=</span> <span class="n">args</span><span class="o">.</span><span class="n">outfile</span>
    <span class="k">if</span> <span class="n">output</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
        <span class="n">output</span> <span class="o">=</span> <span class="n">sys</span><span class="o">.</span><span class="n">stdout</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="n">output</span> <span class="o">=</span> <span class="nb">open</span><span class="p">(</span><span class="n">output</span><span class="p">,</span> <span class="s2">&quot;w&quot;</span><span class="p">)</span>

    <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s1">&#39;# Called as: </span><span class="si">{</span><span class="s2">&quot; &quot;</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">sys</span><span class="o">.</span><span class="n">argv</span><span class="p">)</span><span class="si">}</span><span class="s1">&#39;</span><span class="p">,</span> <span class="n">file</span><span class="o">=</span><span class="n">output</span><span class="p">)</span>
    <span class="k">if</span> <span class="n">output</span> <span class="ow">is</span> <span class="ow">not</span> <span class="n">sys</span><span class="o">.</span><span class="n">stdout</span><span class="p">:</span>
        <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s1">&#39;Called as: </span><span class="si">{</span><span class="s2">&quot; &quot;</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">sys</span><span class="o">.</span><span class="n">argv</span><span class="p">)</span><span class="si">}</span><span class="s1">&#39;</span><span class="p">)</span>

    <span class="c1"># Set device</span>
    <span class="n">device</span> <span class="o">=</span> <span class="n">args</span><span class="o">.</span><span class="n">device</span>
    <span class="n">use_cuda</span> <span class="o">=</span> <span class="p">(</span><span class="n">device</span> <span class="o">&gt;=</span> <span class="mi">0</span><span class="p">)</span> <span class="ow">and</span> <span class="n">torch</span><span class="o">.</span><span class="n">cuda</span><span class="o">.</span><span class="n">is_available</span><span class="p">()</span>
    <span class="k">if</span> <span class="n">use_cuda</span><span class="p">:</span>
        <span class="n">torch</span><span class="o">.</span><span class="n">cuda</span><span class="o">.</span><span class="n">set_device</span><span class="p">(</span><span class="n">device</span><span class="p">)</span>
        <span class="nb">print</span><span class="p">(</span>
            <span class="sa">f</span><span class="s2">&quot;# Using CUDA device </span><span class="si">{</span><span class="n">device</span><span class="si">}</span><span class="s2"> - </span><span class="si">{</span><span class="n">torch</span><span class="o">.</span><span class="n">cuda</span><span class="o">.</span><span class="n">get_device_name</span><span class="p">(</span><span class="n">device</span><span class="p">)</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">,</span>
            <span class="n">file</span><span class="o">=</span><span class="n">output</span><span class="p">,</span>
        <span class="p">)</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;# Using CPU&quot;</span><span class="p">,</span> <span class="n">file</span><span class="o">=</span><span class="n">output</span><span class="p">)</span>
        <span class="n">device</span> <span class="o">=</span> <span class="s2">&quot;cpu&quot;</span>

    <span class="n">batch_size</span> <span class="o">=</span> <span class="n">args</span><span class="o">.</span><span class="n">batch_size</span>

    <span class="n">train_fi</span> <span class="o">=</span> <span class="n">args</span><span class="o">.</span><span class="n">train</span>
    <span class="n">test_fi</span> <span class="o">=</span> <span class="n">args</span><span class="o">.</span><span class="n">val</span>
    <span class="n">augment</span> <span class="o">=</span> <span class="n">args</span><span class="o">.</span><span class="n">augment</span>
    <span class="n">embedding_h5</span> <span class="o">=</span> <span class="n">args</span><span class="o">.</span><span class="n">embedding</span>
    <span class="n">h5fi</span> <span class="o">=</span> <span class="n">h5py</span><span class="o">.</span><span class="n">File</span><span class="p">(</span><span class="n">embedding_h5</span><span class="p">,</span> <span class="s2">&quot;r&quot;</span><span class="p">)</span>

    <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;# Loading training pairs from </span><span class="si">{</span><span class="n">train_fi</span><span class="si">}</span><span class="s2">...&quot;</span><span class="p">,</span> <span class="n">file</span><span class="o">=</span><span class="n">output</span><span class="p">)</span>
    <span class="n">output</span><span class="o">.</span><span class="n">flush</span><span class="p">()</span>

    <span class="n">train_df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">train_fi</span><span class="p">,</span> <span class="n">sep</span><span class="o">=</span><span class="s2">&quot;</span><span class="se">\t</span><span class="s2">&quot;</span><span class="p">,</span> <span class="n">header</span><span class="o">=</span><span class="kc">None</span><span class="p">)</span>
    <span class="k">if</span> <span class="n">augment</span><span class="p">:</span>
        <span class="n">train_n0</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">concat</span><span class="p">((</span><span class="n">train_df</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">train_df</span><span class="p">[</span><span class="mi">1</span><span class="p">]),</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
        <span class="n">train_n1</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">concat</span><span class="p">((</span><span class="n">train_df</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">train_df</span><span class="p">[</span><span class="mi">0</span><span class="p">]),</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
        <span class="n">train_y</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">from_numpy</span><span class="p">(</span><span class="n">pd</span><span class="o">.</span><span class="n">concat</span><span class="p">((</span><span class="n">train_df</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="mi">1</span> <span class="o">-</span> <span class="n">train_df</span><span class="p">[</span><span class="mi">2</span><span class="p">]))</span><span class="o">.</span><span class="n">values</span><span class="p">)</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="n">train_n0</span><span class="p">,</span> <span class="n">train_n1</span> <span class="o">=</span> <span class="n">train_df</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">train_df</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
        <span class="n">train_y</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">from_numpy</span><span class="p">(</span><span class="n">train_df</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span><span class="o">.</span><span class="n">values</span><span class="p">)</span>

    <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;# Loading testing pairs from </span><span class="si">{</span><span class="n">test_fi</span><span class="si">}</span><span class="s2">...&quot;</span><span class="p">,</span> <span class="n">file</span><span class="o">=</span><span class="n">output</span><span class="p">)</span>
    <span class="n">output</span><span class="o">.</span><span class="n">flush</span><span class="p">()</span>

    <span class="n">test_df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">test_fi</span><span class="p">,</span> <span class="n">sep</span><span class="o">=</span><span class="s2">&quot;</span><span class="se">\t</span><span class="s2">&quot;</span><span class="p">,</span> <span class="n">header</span><span class="o">=</span><span class="kc">None</span><span class="p">)</span>
    <span class="k">if</span> <span class="n">augment</span><span class="p">:</span>
        <span class="n">test_n0</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">concat</span><span class="p">((</span><span class="n">test_df</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">test_df</span><span class="p">[</span><span class="mi">1</span><span class="p">]),</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
        <span class="n">test_n1</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">concat</span><span class="p">((</span><span class="n">test_df</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">test_df</span><span class="p">[</span><span class="mi">0</span><span class="p">]),</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
        <span class="n">test_y</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">from_numpy</span><span class="p">(</span><span class="n">pd</span><span class="o">.</span><span class="n">concat</span><span class="p">((</span><span class="n">test_df</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="mi">1</span> <span class="o">-</span> <span class="n">test_df</span><span class="p">[</span><span class="mi">2</span><span class="p">]))</span><span class="o">.</span><span class="n">values</span><span class="p">)</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="n">test_n0</span><span class="p">,</span> <span class="n">test_n1</span> <span class="o">=</span> <span class="n">test_df</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">test_df</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
        <span class="n">test_y</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">from_numpy</span><span class="p">(</span><span class="n">test_df</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span><span class="o">.</span><span class="n">values</span><span class="p">)</span>
    <span class="n">output</span><span class="o">.</span><span class="n">flush</span><span class="p">()</span>

    <span class="n">train_pairs</span> <span class="o">=</span> <span class="n">PairedDataset</span><span class="p">(</span><span class="n">train_n0</span><span class="p">,</span> <span class="n">train_n1</span><span class="p">,</span> <span class="n">train_y</span><span class="p">)</span>
    <span class="n">pairs_train_iterator</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">DataLoader</span><span class="p">(</span>
        <span class="n">train_pairs</span><span class="p">,</span>
        <span class="n">batch_size</span><span class="o">=</span><span class="n">batch_size</span><span class="p">,</span>
        <span class="n">collate_fn</span><span class="o">=</span><span class="n">collate_paired_sequences</span><span class="p">,</span>
        <span class="n">shuffle</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
    <span class="p">)</span>

    <span class="n">test_pairs</span> <span class="o">=</span> <span class="n">PairedDataset</span><span class="p">(</span><span class="n">test_n0</span><span class="p">,</span> <span class="n">test_n1</span><span class="p">,</span> <span class="n">test_y</span><span class="p">)</span>
    <span class="n">pairs_test_iterator</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">DataLoader</span><span class="p">(</span>
        <span class="n">test_pairs</span><span class="p">,</span>
        <span class="n">batch_size</span><span class="o">=</span><span class="n">batch_size</span><span class="p">,</span>
        <span class="n">collate_fn</span><span class="o">=</span><span class="n">collate_paired_sequences</span><span class="p">,</span>
        <span class="n">shuffle</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
    <span class="p">)</span>

    <span class="n">output</span><span class="o">.</span><span class="n">flush</span><span class="p">()</span>

    <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;# Loading embeddings&quot;</span><span class="p">,</span> <span class="n">file</span><span class="o">=</span><span class="n">output</span><span class="p">)</span>
    <span class="n">tensors</span> <span class="o">=</span> <span class="p">{}</span>
    <span class="n">all_proteins</span> <span class="o">=</span> <span class="nb">set</span><span class="p">(</span><span class="n">train_n0</span><span class="p">)</span><span class="o">.</span><span class="n">union</span><span class="p">(</span><span class="nb">set</span><span class="p">(</span><span class="n">train_n1</span><span class="p">))</span><span class="o">.</span><span class="n">union</span><span class="p">(</span><span class="nb">set</span><span class="p">(</span><span class="n">test_n0</span><span class="p">))</span><span class="o">.</span><span class="n">union</span><span class="p">(</span><span class="nb">set</span><span class="p">(</span><span class="n">test_n1</span><span class="p">))</span>
    <span class="k">for</span> <span class="n">prot_name</span> <span class="ow">in</span> <span class="n">tqdm</span><span class="p">(</span><span class="n">all_proteins</span><span class="p">):</span>
        <span class="n">tensors</span><span class="p">[</span><span class="n">prot_name</span><span class="p">]</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">from_numpy</span><span class="p">(</span><span class="n">h5fi</span><span class="p">[</span><span class="n">prot_name</span><span class="p">][:,</span> <span class="p">:])</span>

    <span class="n">use_cuda</span> <span class="o">=</span> <span class="p">(</span><span class="n">args</span><span class="o">.</span><span class="n">device</span> <span class="o">&gt;</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span> <span class="ow">and</span> <span class="n">torch</span><span class="o">.</span><span class="n">cuda</span><span class="o">.</span><span class="n">is_available</span><span class="p">()</span>

    <span class="k">if</span> <span class="n">args</span><span class="o">.</span><span class="n">checkpoint</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>

        <span class="n">projection_dim</span> <span class="o">=</span> <span class="n">args</span><span class="o">.</span><span class="n">projection_dim</span>
        <span class="n">dropout_p</span> <span class="o">=</span> <span class="n">args</span><span class="o">.</span><span class="n">dropout_p</span>
        <span class="n">embedding</span> <span class="o">=</span> <span class="n">FullyConnectedEmbed</span><span class="p">(</span><span class="mi">6165</span><span class="p">,</span> <span class="n">projection_dim</span><span class="p">,</span> <span class="n">dropout</span><span class="o">=</span><span class="n">dropout_p</span><span class="p">)</span>
        <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;# Initializing embedding model with:&quot;</span><span class="p">,</span> <span class="n">file</span><span class="o">=</span><span class="n">output</span><span class="p">)</span>
        <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;</span><span class="se">\t</span><span class="s2">projection_dim: </span><span class="si">{</span><span class="n">projection_dim</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">,</span> <span class="n">file</span><span class="o">=</span><span class="n">output</span><span class="p">)</span>
        <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;</span><span class="se">\t</span><span class="s2">dropout_p: </span><span class="si">{</span><span class="n">dropout_p</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">,</span> <span class="n">file</span><span class="o">=</span><span class="n">output</span><span class="p">)</span>

        <span class="c1"># Create contact model</span>
        <span class="n">hidden_dim</span> <span class="o">=</span> <span class="n">args</span><span class="o">.</span><span class="n">hidden_dim</span>
        <span class="n">kernel_width</span> <span class="o">=</span> <span class="n">args</span><span class="o">.</span><span class="n">kernel_width</span>
        <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;# Initializing contact model with:&quot;</span><span class="p">,</span> <span class="n">file</span><span class="o">=</span><span class="n">output</span><span class="p">)</span>
        <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;</span><span class="se">\t</span><span class="s2">hidden_dim: </span><span class="si">{</span><span class="n">hidden_dim</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">,</span> <span class="n">file</span><span class="o">=</span><span class="n">output</span><span class="p">)</span>
        <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;</span><span class="se">\t</span><span class="s2">kernel_width: </span><span class="si">{</span><span class="n">kernel_width</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">,</span> <span class="n">file</span><span class="o">=</span><span class="n">output</span><span class="p">)</span>

        <span class="n">contact</span> <span class="o">=</span> <span class="n">ContactCNN</span><span class="p">(</span><span class="n">projection_dim</span><span class="p">,</span> <span class="n">hidden_dim</span><span class="p">,</span> <span class="n">kernel_width</span><span class="p">)</span>

        <span class="c1"># Create the full model</span>
        <span class="n">use_W</span> <span class="o">=</span> <span class="n">args</span><span class="o">.</span><span class="n">use_w</span>
        <span class="n">pool_width</span> <span class="o">=</span> <span class="n">args</span><span class="o">.</span><span class="n">pool_width</span>
        <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;# Initializing interaction model with:&quot;</span><span class="p">,</span> <span class="n">file</span><span class="o">=</span><span class="n">output</span><span class="p">)</span>
        <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;</span><span class="se">\t</span><span class="s2">pool_width: </span><span class="si">{</span><span class="n">pool_width</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">,</span> <span class="n">file</span><span class="o">=</span><span class="n">output</span><span class="p">)</span>
        <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;</span><span class="se">\t</span><span class="s2">use_w: </span><span class="si">{</span><span class="n">use_W</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">,</span> <span class="n">file</span><span class="o">=</span><span class="n">output</span><span class="p">)</span>
        <span class="n">model</span> <span class="o">=</span> <span class="n">ModelInteraction</span><span class="p">(</span><span class="n">embedding</span><span class="p">,</span> <span class="n">contact</span><span class="p">,</span> <span class="n">use_W</span><span class="o">=</span><span class="n">use_W</span><span class="p">,</span> <span class="n">pool_size</span><span class="o">=</span><span class="n">pool_width</span><span class="p">)</span>

        <span class="nb">print</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">file</span><span class="o">=</span><span class="n">output</span><span class="p">)</span>

    <span class="k">else</span><span class="p">:</span>
        <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;# Loading model from checkpoint </span><span class="si">{}</span><span class="s2">&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">args</span><span class="o">.</span><span class="n">checkpoint</span><span class="p">),</span> <span class="n">file</span><span class="o">=</span><span class="n">output</span><span class="p">)</span>
        <span class="n">model</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">args</span><span class="o">.</span><span class="n">checkpoint</span><span class="p">)</span>
        <span class="n">model</span><span class="o">.</span><span class="n">use_cuda</span> <span class="o">=</span> <span class="n">use_cuda</span>

    <span class="k">if</span> <span class="n">use_cuda</span><span class="p">:</span>
        <span class="n">model</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span>

    <span class="c1"># Train the model</span>
    <span class="n">lr</span> <span class="o">=</span> <span class="n">args</span><span class="o">.</span><span class="n">lr</span>
    <span class="n">wd</span> <span class="o">=</span> <span class="n">args</span><span class="o">.</span><span class="n">weight_decay</span>
    <span class="n">num_epochs</span> <span class="o">=</span> <span class="n">args</span><span class="o">.</span><span class="n">num_epochs</span>
    <span class="n">batch_size</span> <span class="o">=</span> <span class="n">args</span><span class="o">.</span><span class="n">batch_size</span>
    <span class="n">report_steps</span> <span class="o">=</span> <span class="n">args</span><span class="o">.</span><span class="n">epoch_scale</span>
    <span class="n">inter_weight</span> <span class="o">=</span> <span class="n">args</span><span class="o">.</span><span class="n">lambda_</span>
    <span class="n">cmap_weight</span> <span class="o">=</span> <span class="mi">1</span> <span class="o">-</span> <span class="n">inter_weight</span>
    <span class="n">digits</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">floor</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">log10</span><span class="p">(</span><span class="n">num_epochs</span><span class="p">)))</span> <span class="o">+</span> <span class="mi">1</span>
    <span class="n">save_prefix</span> <span class="o">=</span> <span class="n">args</span><span class="o">.</span><span class="n">save_prefix</span>
    <span class="k">if</span> <span class="n">save_prefix</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
        <span class="n">save_prefix</span> <span class="o">=</span> <span class="n">datetime</span><span class="o">.</span><span class="n">datetime</span><span class="o">.</span><span class="n">now</span><span class="p">()</span><span class="o">.</span><span class="n">strftime</span><span class="p">(</span><span class="s2">&quot;%Y-%m-</span><span class="si">%d</span><span class="s2">-%H-%M&quot;</span><span class="p">)</span>

    <span class="n">params</span> <span class="o">=</span> <span class="p">[</span><span class="n">p</span> <span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="n">model</span><span class="o">.</span><span class="n">parameters</span><span class="p">()</span> <span class="k">if</span> <span class="n">p</span><span class="o">.</span><span class="n">requires_grad</span><span class="p">]</span>
    <span class="n">optim</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">optim</span><span class="o">.</span><span class="n">Adam</span><span class="p">(</span><span class="n">params</span><span class="p">,</span> <span class="n">lr</span><span class="o">=</span><span class="n">lr</span><span class="p">,</span> <span class="n">weight_decay</span><span class="o">=</span><span class="n">wd</span><span class="p">)</span>

    <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s1">&#39;# Using save prefix &quot;</span><span class="si">{</span><span class="n">save_prefix</span><span class="si">}</span><span class="s1">&quot;&#39;</span><span class="p">,</span> <span class="n">file</span><span class="o">=</span><span class="n">output</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;# Training with Adam: lr=</span><span class="si">{</span><span class="n">lr</span><span class="si">}</span><span class="s2">, weight_decay=</span><span class="si">{</span><span class="n">wd</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">,</span> <span class="n">file</span><span class="o">=</span><span class="n">output</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;</span><span class="se">\t</span><span class="s2">num_epochs: </span><span class="si">{</span><span class="n">num_epochs</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">,</span> <span class="n">file</span><span class="o">=</span><span class="n">output</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;</span><span class="se">\t</span><span class="s2">epoch_scale: </span><span class="si">{</span><span class="n">report_steps</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">,</span> <span class="n">file</span><span class="o">=</span><span class="n">output</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;</span><span class="se">\t</span><span class="s2">batch_size: </span><span class="si">{</span><span class="n">batch_size</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">,</span> <span class="n">file</span><span class="o">=</span><span class="n">output</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;</span><span class="se">\t</span><span class="s2">interaction weight: </span><span class="si">{</span><span class="n">inter_weight</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">,</span> <span class="n">file</span><span class="o">=</span><span class="n">output</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;</span><span class="se">\t</span><span class="s2">contact map weight: </span><span class="si">{</span><span class="n">cmap_weight</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">,</span> <span class="n">file</span><span class="o">=</span><span class="n">output</span><span class="p">)</span>
    <span class="n">output</span><span class="o">.</span><span class="n">flush</span><span class="p">()</span>

    <span class="n">batch_report_fmt</span> <span class="o">=</span> <span class="s2">&quot;# [</span><span class="si">{}</span><span class="s2">/</span><span class="si">{}</span><span class="s2">] training </span><span class="si">{:.1%}</span><span class="s2">: Loss=</span><span class="si">{:.6}</span><span class="s2">, Accuracy=</span><span class="si">{:.3%}</span><span class="s2">, MSE=</span><span class="si">{:.6}</span><span class="s2">&quot;</span>
    <span class="n">epoch_report_fmt</span> <span class="o">=</span> <span class="s2">&quot;# Finished Epoch </span><span class="si">{}</span><span class="s2">/</span><span class="si">{}</span><span class="s2">: Loss=</span><span class="si">{:.6}</span><span class="s2">, Accuracy=</span><span class="si">{:.3%}</span><span class="s2">, MSE=</span><span class="si">{:.6}</span><span class="s2">, Precision=</span><span class="si">{:.6}</span><span class="s2">, Recall=</span><span class="si">{:.6}</span><span class="s2">, F1=</span><span class="si">{:.6}</span><span class="s2">, AUPR=</span><span class="si">{:.6}</span><span class="s2">&quot;</span>

    <span class="n">N</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">pairs_train_iterator</span><span class="p">)</span> <span class="o">*</span> <span class="n">batch_size</span>
    <span class="k">for</span> <span class="n">epoch</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">num_epochs</span><span class="p">):</span>

        <span class="n">model</span><span class="o">.</span><span class="n">train</span><span class="p">()</span>

        <span class="n">n</span> <span class="o">=</span> <span class="mi">0</span>
        <span class="n">loss_accum</span> <span class="o">=</span> <span class="mi">0</span>
        <span class="n">acc_accum</span> <span class="o">=</span> <span class="mi">0</span>
        <span class="n">mse_accum</span> <span class="o">=</span> <span class="mi">0</span>

        <span class="c1"># Train batches</span>
        <span class="k">for</span> <span class="p">(</span><span class="n">z0</span><span class="p">,</span> <span class="n">z1</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span> <span class="ow">in</span> <span class="n">tqdm</span><span class="p">(</span><span class="n">pairs_train_iterator</span><span class="p">,</span> <span class="n">desc</span><span class="o">=</span><span class="sa">f</span><span class="s2">&quot;Epoch </span><span class="si">{</span><span class="n">epoch</span><span class="o">+</span><span class="mi">1</span><span class="si">}</span><span class="s2">/</span><span class="si">{</span><span class="n">num_epochs</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">,</span><span class="n">total</span><span class="o">=</span><span class="nb">len</span><span class="p">(</span><span class="n">pairs_train_iterator</span><span class="p">)):</span>

            <span class="n">loss</span><span class="p">,</span> <span class="n">correct</span><span class="p">,</span> <span class="n">mse</span><span class="p">,</span> <span class="n">b</span> <span class="o">=</span> <span class="n">interaction_grad</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">z0</span><span class="p">,</span> <span class="n">z1</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">tensors</span><span class="p">,</span> <span class="n">use_cuda</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">inter_weight</span><span class="p">)</span>

            <span class="n">n</span> <span class="o">+=</span> <span class="n">b</span>
            <span class="n">delta</span> <span class="o">=</span> <span class="n">b</span> <span class="o">*</span> <span class="p">(</span><span class="n">loss</span> <span class="o">-</span> <span class="n">loss_accum</span><span class="p">)</span>
            <span class="n">loss_accum</span> <span class="o">+=</span> <span class="n">delta</span> <span class="o">/</span> <span class="n">n</span>

            <span class="n">delta</span> <span class="o">=</span> <span class="n">correct</span> <span class="o">-</span> <span class="n">b</span> <span class="o">*</span> <span class="n">acc_accum</span>
            <span class="n">acc_accum</span> <span class="o">+=</span> <span class="n">delta</span> <span class="o">/</span> <span class="n">n</span>

            <span class="n">delta</span> <span class="o">=</span> <span class="n">b</span> <span class="o">*</span> <span class="p">(</span><span class="n">mse</span> <span class="o">-</span> <span class="n">mse_accum</span><span class="p">)</span>
            <span class="n">mse_accum</span> <span class="o">+=</span> <span class="n">delta</span> <span class="o">/</span> <span class="n">n</span>

            <span class="n">report</span> <span class="o">=</span> <span class="p">(</span><span class="n">n</span> <span class="o">-</span> <span class="n">b</span><span class="p">)</span> <span class="o">//</span> <span class="mi">100</span> <span class="o">&lt;</span> <span class="n">n</span> <span class="o">//</span> <span class="mi">100</span>

            <span class="n">optim</span><span class="o">.</span><span class="n">step</span><span class="p">()</span>
            <span class="n">optim</span><span class="o">.</span><span class="n">zero_grad</span><span class="p">()</span>
            <span class="n">model</span><span class="o">.</span><span class="n">clip</span><span class="p">()</span>

            <span class="k">if</span> <span class="n">report</span><span class="p">:</span>
                <span class="n">tokens</span> <span class="o">=</span> <span class="p">[</span>
                    <span class="n">epoch</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span>
                    <span class="n">num_epochs</span><span class="p">,</span>
                    <span class="n">n</span> <span class="o">/</span> <span class="n">N</span><span class="p">,</span>
                    <span class="n">loss_accum</span><span class="p">,</span>
                    <span class="n">acc_accum</span><span class="p">,</span>
                    <span class="n">mse_accum</span><span class="p">,</span>
                <span class="p">]</span>
                <span class="k">if</span> <span class="n">output</span> <span class="ow">is</span> <span class="ow">not</span> <span class="n">sys</span><span class="o">.</span><span class="n">stdout</span><span class="p">:</span>
                    <span class="nb">print</span><span class="p">(</span><span class="n">batch_report_fmt</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="o">*</span><span class="n">tokens</span><span class="p">),</span> <span class="n">file</span><span class="o">=</span><span class="n">output</span><span class="p">)</span>
                    <span class="n">output</span><span class="o">.</span><span class="n">flush</span><span class="p">()</span>

        <span class="k">if</span> <span class="p">(</span><span class="n">epoch</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="o">%</span> <span class="n">report_steps</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
            <span class="n">model</span><span class="o">.</span><span class="n">eval</span><span class="p">()</span>

            <span class="k">with</span> <span class="n">torch</span><span class="o">.</span><span class="n">no_grad</span><span class="p">():</span>

                <span class="p">(</span>
                    <span class="n">inter_loss</span><span class="p">,</span>
                    <span class="n">inter_correct</span><span class="p">,</span>
                    <span class="n">inter_mse</span><span class="p">,</span>
                    <span class="n">inter_pr</span><span class="p">,</span>
                    <span class="n">inter_re</span><span class="p">,</span>
                    <span class="n">inter_f1</span><span class="p">,</span>
                    <span class="n">inter_aupr</span><span class="p">,</span>
                <span class="p">)</span> <span class="o">=</span> <span class="n">interaction_eval</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">pairs_test_iterator</span><span class="p">,</span> <span class="n">tensors</span><span class="p">,</span> <span class="n">use_cuda</span><span class="p">)</span>
                <span class="n">tokens</span> <span class="o">=</span> <span class="p">[</span>
                    <span class="n">epoch</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span>
                    <span class="n">num_epochs</span><span class="p">,</span>
                    <span class="n">inter_loss</span><span class="p">,</span>
                    <span class="n">inter_correct</span> <span class="o">/</span> <span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">pairs_test_iterator</span><span class="p">)</span> <span class="o">*</span> <span class="n">batch_size</span><span class="p">),</span>
                    <span class="n">inter_mse</span><span class="p">,</span>
                    <span class="n">inter_pr</span><span class="p">,</span>
                    <span class="n">inter_re</span><span class="p">,</span>
                    <span class="n">inter_f1</span><span class="p">,</span>
                    <span class="n">inter_aupr</span><span class="p">,</span>
                <span class="p">]</span>
                <span class="nb">print</span><span class="p">(</span><span class="n">epoch_report_fmt</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="o">*</span><span class="n">tokens</span><span class="p">),</span> <span class="n">file</span><span class="o">=</span><span class="n">output</span><span class="p">)</span>
                <span class="n">output</span><span class="o">.</span><span class="n">flush</span><span class="p">()</span>

            <span class="c1"># Save the model</span>
            <span class="k">if</span> <span class="n">save_prefix</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
                <span class="n">save_path</span> <span class="o">=</span> <span class="n">save_prefix</span> <span class="o">+</span> <span class="s2">&quot;_epoch&quot;</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">epoch</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">zfill</span><span class="p">(</span><span class="n">digits</span><span class="p">)</span> <span class="o">+</span> <span class="s2">&quot;.sav&quot;</span>
                <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;# Saving model to </span><span class="si">{</span><span class="n">save_path</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">,</span> <span class="n">file</span><span class="o">=</span><span class="n">output</span><span class="p">)</span>
                <span class="n">model</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span>
                <span class="n">torch</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">save_path</span><span class="p">)</span>
                <span class="k">if</span> <span class="n">use_cuda</span><span class="p">:</span>
                    <span class="n">model</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span>

        <span class="n">output</span><span class="o">.</span><span class="n">flush</span><span class="p">()</span>

    <span class="k">if</span> <span class="n">save_prefix</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
        <span class="n">save_path</span> <span class="o">=</span> <span class="n">save_prefix</span> <span class="o">+</span> <span class="s2">&quot;_final.sav&quot;</span>
        <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;# Saving final model to </span><span class="si">{</span><span class="n">save_path</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">,</span> <span class="n">file</span><span class="o">=</span><span class="n">output</span><span class="p">)</span>
        <span class="n">model</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span>
        <span class="n">torch</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">save_path</span><span class="p">)</span>
        <span class="k">if</span> <span class="n">use_cuda</span><span class="p">:</span>
            <span class="n">model</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span>

    <span class="n">output</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>


<span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s2">&quot;__main__&quot;</span><span class="p">:</span>
    <span class="n">parser</span> <span class="o">=</span> <span class="n">argparse</span><span class="o">.</span><span class="n">ArgumentParser</span><span class="p">(</span><span class="n">description</span><span class="o">=</span><span class="vm">__doc__</span><span class="p">)</span>
    <span class="n">add_args</span><span class="p">(</span><span class="n">parser</span><span class="p">)</span>
    <span class="n">main</span><span class="p">(</span><span class="n">parser</span><span class="o">.</span><span class="n">parse_args</span><span class="p">())</span>
</pre></div>

           </div>
           
          </div>
          <footer>

  <hr/>

  <div role="contentinfo">
    <p>
        &#169; Copyright 2020, Samuel Sledzieski, Rohit Singh.

    </p>
  </div>
    
    
    
    Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
    
    <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
    
    provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>
        </div>
      </div>

    </section>

  </div>
  

  <script type="text/javascript">
      jQuery(function () {
          SphinxRtdTheme.Navigation.enable(true);
      });
  </script>

  
  
    
   

</body>
</html>