File size: 23,918 Bytes
8896a5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
<!DOCTYPE html>
<html class="writer-html5" lang="en" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>dscript.language_model — D-SCRIPT v1.0-beta documentation</title>
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<!--[if lt IE 9]>
<script src="../../_static/js/html5shiv.min.js"></script>
<![endif]-->
<script type="text/javascript" id="documentation_options" data-url_root="../../" src="../../_static/documentation_options.js"></script>
<script src="../../_static/jquery.js"></script>
<script src="../../_static/underscore.js"></script>
<script src="../../_static/doctools.js"></script>
<script type="text/javascript" src="../../_static/js/theme.js"></script>
<link rel="index" title="Index" href="../../genindex.html" />
<link rel="search" title="Search" href="../../search.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="../../index.html" class="icon icon-home"> D-SCRIPT
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../installation.html">Installation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../usage.html">Usage</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../data.html">Data</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index.html">API</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../../index.html">D-SCRIPT</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="../../index.html" class="icon icon-home"></a> »</li>
<li><a href="../index.html">Module code</a> »</li>
<li>dscript.language_model</li>
<li class="wy-breadcrumbs-aside">
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<h1>Source code for dscript.language_model</h1><div class="highlight"><pre>
<span></span><span class="kn">import</span> <span class="nn">os</span><span class="o">,</span> <span class="nn">sys</span>
<span class="kn">import</span> <span class="nn">subprocess</span> <span class="k">as</span> <span class="nn">sp</span>
<span class="kn">import</span> <span class="nn">random</span>
<span class="kn">import</span> <span class="nn">torch</span>
<span class="kn">import</span> <span class="nn">h5py</span>
<span class="kn">from</span> <span class="nn">tqdm</span> <span class="kn">import</span> <span class="n">tqdm</span>
<span class="kn">from</span> <span class="nn">.fasta</span> <span class="kn">import</span> <span class="n">parse</span><span class="p">,</span> <span class="n">parse_directory</span><span class="p">,</span> <span class="n">write</span>
<span class="kn">from</span> <span class="nn">.pretrained</span> <span class="kn">import</span> <span class="n">get_pretrained</span>
<span class="kn">from</span> <span class="nn">.alphabets</span> <span class="kn">import</span> <span class="n">Uniprot21</span>
<span class="kn">from</span> <span class="nn">.models.embedding</span> <span class="kn">import</span> <span class="n">SkipLSTM</span>
<span class="kn">from</span> <span class="nn">datetime</span> <span class="kn">import</span> <span class="n">datetime</span>
<div class="viewcode-block" id="lm_embed"><a class="viewcode-back" href="../../api/index.html#dscript.language_model.lm_embed">[docs]</a><span class="k">def</span> <span class="nf">lm_embed</span><span class="p">(</span><span class="n">sequence</span><span class="p">,</span> <span class="n">use_cuda</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> Embed a single sequence using pre-trained language model from `Bepler & Berger <https://github.com/tbepler/protein-sequence-embedding-iclr2019>`_.</span>
<span class="sd"> :param sequence: Input sequence to be embedded</span>
<span class="sd"> :type sequence: str</span>
<span class="sd"> :param use_cuda: Whether to generate embeddings using GPU device [default: False]</span>
<span class="sd"> :type use_cuda: bool</span>
<span class="sd"> :return: Embedded sequence</span>
<span class="sd"> :rtype: torch.Tensor</span>
<span class="sd"> """</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">get_pretrained</span><span class="p">(</span><span class="s2">"lm_v1"</span><span class="p">)</span>
<span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">init</span><span class="o">.</span><span class="n">normal_</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">proj</span><span class="o">.</span><span class="n">weight</span><span class="p">)</span>
<span class="n">model</span><span class="o">.</span><span class="n">proj</span><span class="o">.</span><span class="n">bias</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="mi">100</span><span class="p">))</span>
<span class="k">if</span> <span class="n">use_cuda</span><span class="p">:</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span>
<span class="n">model</span><span class="o">.</span><span class="n">eval</span><span class="p">()</span>
<span class="k">with</span> <span class="n">torch</span><span class="o">.</span><span class="n">no_grad</span><span class="p">():</span>
<span class="n">alphabet</span> <span class="o">=</span> <span class="n">Uniprot21</span><span class="p">()</span>
<span class="n">es</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">from_numpy</span><span class="p">(</span><span class="n">alphabet</span><span class="o">.</span><span class="n">encode</span><span class="p">(</span><span class="n">sequence</span><span class="o">.</span><span class="n">encode</span><span class="p">(</span><span class="s1">'utf-8'</span><span class="p">)))</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">es</span><span class="o">.</span><span class="n">long</span><span class="p">()</span><span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="k">if</span> <span class="n">use_cuda</span><span class="p">:</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span>
<span class="n">z</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="k">return</span> <span class="n">z</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span></div>
<div class="viewcode-block" id="embed_from_fasta"><a class="viewcode-back" href="../../api/index.html#dscript.language_model.embed_from_fasta">[docs]</a><span class="k">def</span> <span class="nf">embed_from_fasta</span><span class="p">(</span><span class="n">fastaPath</span><span class="p">,</span> <span class="n">outputPath</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> Embed sequences using pre-trained language model from `Bepler & Berger <https://github.com/tbepler/protein-sequence-embedding-iclr2019>`_.</span>
<span class="sd"> :param fastaPath: Input sequence file (``.fasta`` format)</span>
<span class="sd"> :type fastaPath: str</span>
<span class="sd"> :param outputPath: Output embedding file (``.h5`` format)</span>
<span class="sd"> :type outputPath: str</span>
<span class="sd"> :param device: Compute device to use for embeddings [default: 0]</span>
<span class="sd"> :type device: int</span>
<span class="sd"> :param verbose: Print embedding progress</span>
<span class="sd"> :type verbose: bool</span>
<span class="sd"> """</span>
<span class="n">use_cuda</span> <span class="o">=</span> <span class="p">(</span><span class="n">device</span> <span class="o">>=</span> <span class="mi">0</span><span class="p">)</span> <span class="ow">and</span> <span class="n">torch</span><span class="o">.</span><span class="n">cuda</span><span class="o">.</span><span class="n">is_available</span><span class="p">()</span>
<span class="k">if</span> <span class="n">use_cuda</span><span class="p">:</span>
<span class="n">torch</span><span class="o">.</span><span class="n">cuda</span><span class="o">.</span><span class="n">set_device</span><span class="p">(</span><span class="n">device</span><span class="p">)</span>
<span class="k">if</span> <span class="n">verbose</span><span class="p">:</span>
<span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">"# Using CUDA device </span><span class="si">{</span><span class="n">device</span><span class="si">}</span><span class="s2"> - </span><span class="si">{</span><span class="n">torch</span><span class="o">.</span><span class="n">cuda</span><span class="o">.</span><span class="n">get_device_name</span><span class="p">(</span><span class="n">device</span><span class="p">)</span><span class="si">}</span><span class="s2">"</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">if</span> <span class="n">verbose</span><span class="p">:</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"# Using CPU"</span><span class="p">)</span>
<span class="k">if</span> <span class="n">verbose</span><span class="p">:</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"# Loading Model..."</span><span class="p">)</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">get_pretrained</span><span class="p">(</span><span class="s2">"lm_v1"</span><span class="p">)</span>
<span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">init</span><span class="o">.</span><span class="n">normal_</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">proj</span><span class="o">.</span><span class="n">weight</span><span class="p">)</span>
<span class="n">model</span><span class="o">.</span><span class="n">proj</span><span class="o">.</span><span class="n">bias</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="mi">100</span><span class="p">))</span>
<span class="k">if</span> <span class="n">use_cuda</span><span class="p">:</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span>
<span class="n">model</span><span class="o">.</span><span class="n">eval</span><span class="p">()</span>
<span class="k">if</span> <span class="n">verbose</span><span class="p">:</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"# Loading Sequences..."</span><span class="p">)</span>
<span class="n">names</span><span class="p">,</span> <span class="n">seqs</span> <span class="o">=</span> <span class="n">parse</span><span class="p">(</span><span class="nb">open</span><span class="p">(</span><span class="n">fastaPath</span><span class="p">,</span> <span class="s2">"rb"</span><span class="p">))</span>
<span class="n">alphabet</span> <span class="o">=</span> <span class="n">Uniprot21</span><span class="p">()</span>
<span class="n">encoded_seqs</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">s</span> <span class="ow">in</span> <span class="n">tqdm</span><span class="p">(</span><span class="n">seqs</span><span class="p">):</span>
<span class="n">es</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">from_numpy</span><span class="p">(</span><span class="n">alphabet</span><span class="o">.</span><span class="n">encode</span><span class="p">(</span><span class="n">s</span><span class="p">))</span>
<span class="k">if</span> <span class="n">use_cuda</span><span class="p">:</span>
<span class="n">es</span> <span class="o">=</span> <span class="n">es</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span>
<span class="n">encoded_seqs</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">es</span><span class="p">)</span>
<span class="k">if</span> <span class="n">verbose</span><span class="p">:</span>
<span class="n">num_seqs</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">encoded_seqs</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"# </span><span class="si">{}</span><span class="s2"> Sequences Loaded"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">num_seqs</span><span class="p">))</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"# Approximate Storage Required (varies by average sequence length): ~</span><span class="si">{}</span><span class="s2">GB"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">num_seqs</span> <span class="o">*</span> <span class="p">(</span><span class="mi">1</span><span class="o">/</span><span class="mi">125</span><span class="p">)))</span>
<span class="n">h5fi</span> <span class="o">=</span> <span class="n">h5py</span><span class="o">.</span><span class="n">File</span><span class="p">(</span><span class="n">outputPath</span><span class="p">,</span> <span class="s2">"w"</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"# Storing to </span><span class="si">{}</span><span class="s2">..."</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">outputPath</span><span class="p">))</span>
<span class="k">with</span> <span class="n">torch</span><span class="o">.</span><span class="n">no_grad</span><span class="p">():</span>
<span class="k">try</span><span class="p">:</span>
<span class="k">for</span> <span class="p">(</span><span class="n">n</span><span class="p">,</span> <span class="n">x</span><span class="p">)</span> <span class="ow">in</span> <span class="n">tqdm</span><span class="p">(</span><span class="nb">zip</span><span class="p">(</span><span class="n">names</span><span class="p">,</span> <span class="n">encoded_seqs</span><span class="p">),</span><span class="n">total</span><span class="o">=</span><span class="nb">len</span><span class="p">(</span><span class="n">names</span><span class="p">)):</span>
<span class="n">name</span> <span class="o">=</span> <span class="n">n</span><span class="o">.</span><span class="n">decode</span><span class="p">(</span><span class="s2">"utf-8"</span><span class="p">)</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">name</span> <span class="ow">in</span> <span class="n">h5fi</span><span class="p">:</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">long</span><span class="p">()</span><span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="n">z</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">h5fi</span><span class="o">.</span><span class="n">create_dataset</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">data</span><span class="o">=</span><span class="n">z</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">(),</span> <span class="n">compression</span><span class="o">=</span><span class="s2">"lzf"</span><span class="p">)</span>
<span class="k">except</span> <span class="ne">KeyboardInterrupt</span><span class="p">:</span>
<span class="n">h5fi</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
<span class="n">sys</span><span class="o">.</span><span class="n">exit</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="n">h5fi</span><span class="o">.</span><span class="n">close</span><span class="p">()</span></div>
<div class="viewcode-block" id="embed_from_directory"><a class="viewcode-back" href="../../api/index.html#dscript.language_model.embed_from_directory">[docs]</a><span class="k">def</span> <span class="nf">embed_from_directory</span><span class="p">(</span><span class="n">directory</span><span class="p">,</span> <span class="n">outputPath</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">extension</span><span class="o">=</span><span class="s2">".seq"</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> Embed all files in a directory in ``.fasta`` format using pre-trained language model from `Bepler & Berger <https://github.com/tbepler/protein-sequence-embedding-iclr2019>`_.</span>
<span class="sd"> :param directory: Input directory (``.fasta`` format)</span>
<span class="sd"> :type directory: str</span>
<span class="sd"> :param outputPath: Output embedding file (``.h5`` format)</span>
<span class="sd"> :type outputPath: str</span>
<span class="sd"> :param device: Compute device to use for embeddings [default: 0]</span>
<span class="sd"> :type device: int</span>
<span class="sd"> :param verbose: Print embedding progress</span>
<span class="sd"> :type verbose: bool</span>
<span class="sd"> :param extension: Extension of all files to read in</span>
<span class="sd"> :type extension: str</span>
<span class="sd"> """</span>
<span class="n">nam</span><span class="p">,</span> <span class="n">seq</span> <span class="o">=</span> <span class="n">parse_directory</span><span class="p">(</span><span class="n">directory</span><span class="p">,</span> <span class="n">extension</span><span class="o">=</span><span class="n">extension</span><span class="p">)</span>
<span class="n">fastaPath</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">"</span><span class="si">{</span><span class="n">directory</span><span class="si">}</span><span class="s2">/allSeqs.fa"</span>
<span class="k">if</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">exists</span><span class="p">(</span><span class="n">fastaPath</span><span class="p">):</span>
<span class="n">fastaPath</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">"</span><span class="si">{</span><span class="n">fastaPath</span><span class="si">}</span><span class="s2">.</span><span class="si">{</span><span class="nb">int</span><span class="p">(</span><span class="n">datetime</span><span class="o">.</span><span class="n">utcnow</span><span class="p">()</span><span class="o">.</span><span class="n">timestamp</span><span class="p">())</span><span class="si">}</span><span class="s2">"</span>
<span class="n">write</span><span class="p">(</span><span class="n">nam</span><span class="p">,</span> <span class="n">seq</span><span class="p">,</span> <span class="nb">open</span><span class="p">(</span><span class="n">fastaPath</span><span class="p">,</span> <span class="s2">"w"</span><span class="p">))</span>
<span class="n">embed_from_fasta</span><span class="p">(</span><span class="n">fastaPath</span><span class="p">,</span> <span class="n">outputPath</span><span class="p">,</span> <span class="n">device</span><span class="p">,</span> <span class="n">verbose</span><span class="p">)</span></div>
</pre></div>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<p>
© Copyright 2020, Samuel Sledzieski, Rohit Singh.
</p>
</div>
Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
<a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html> |