File size: 21,125 Bytes
8896a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331


<!DOCTYPE html>
<html class="writer-html5" lang="en" >
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>dscript.models.contact &mdash; D-SCRIPT v1.0-beta documentation</title>
  

  
  <link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
  <link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />

  
  
  
  

  
  <!--[if lt IE 9]>
    <script src="../../../_static/js/html5shiv.min.js"></script>
  <![endif]-->
  
    
      <script type="text/javascript" id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
        <script src="../../../_static/jquery.js"></script>
        <script src="../../../_static/underscore.js"></script>
        <script src="../../../_static/doctools.js"></script>
        <script src="../../../_static/language_data.js"></script>
        <script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
    
    <script type="text/javascript" src="../../../_static/js/theme.js"></script>

    
    <link rel="index" title="Index" href="../../../genindex.html" />
    <link rel="search" title="Search" href="../../../search.html" /> 
</head>

<body class="wy-body-for-nav">

   
  <div class="wy-grid-for-nav">
    
    <nav data-toggle="wy-nav-shift" class="wy-nav-side">
      <div class="wy-side-scroll">
        <div class="wy-side-nav-search" >
          

          
            <a href="../../../index.html" class="icon icon-home" alt="Documentation Home"> D-SCRIPT
          

          
          </a>

          
            
            
          

          
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>

          
        </div>

        
        <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
          
            
            
              
            
            
              <ul>
<li class="toctree-l1"><a class="reference internal" href="../../../installation.html">Installation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../usage.html">Usage</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../data.html">Data</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../api/index.html">API</a></li>
</ul>

            
          
        </div>
        
      </div>
    </nav>

    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">

      
      <nav class="wy-nav-top" aria-label="top navigation">
        
          <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
          <a href="../../../index.html">D-SCRIPT</a>
        
      </nav>


      <div class="wy-nav-content">
        
        <div class="rst-content">
        
          















<div role="navigation" aria-label="breadcrumbs navigation">

  <ul class="wy-breadcrumbs">
    
      <li><a href="../../../index.html" class="icon icon-home"></a> &raquo;</li>
        
          <li><a href="../../index.html">Module code</a> &raquo;</li>
        
      <li>dscript.models.contact</li>
    
    
      <li class="wy-breadcrumbs-aside">
        
      </li>
    
  </ul>

  
  <hr/>
</div>
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <h1>Source code for dscript.models.contact</h1><div class="highlight"><pre>
<span></span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">Contact model classes.</span>
<span class="sd">&quot;&quot;&quot;</span>

<span class="kn">import</span> <span class="nn">torch</span>
<span class="kn">import</span> <span class="nn">torch.nn</span> <span class="k">as</span> <span class="nn">nn</span>
<span class="kn">import</span> <span class="nn">torch.functional</span> <span class="k">as</span> <span class="nn">F</span>


<div class="viewcode-block" id="FullyConnected"><a class="viewcode-back" href="../../../api/dscript.models.html#dscript.models.contact.FullyConnected">[docs]</a><span class="k">class</span> <span class="nc">FullyConnected</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">    Performs part 1 of Contact Prediction Module. Takes embeddings from Projection module and produces broadcast tensor.</span>

<span class="sd">    Input embeddings of dimension :math:`d` are combined into a :math:`2d` length MLP input :math:`z_{cat}`, where :math:`z_{cat} = [z_0 \\ominus z_1 | z_0 \\odot z_1]`</span>

<span class="sd">    :param embed_dim: Output dimension of `dscript.models.embedding &lt;#module-dscript.models.embedding&gt;`_ model :math:`d` [default: 100]</span>
<span class="sd">    :type embed_dim: int</span>
<span class="sd">    :param hidden_dim: Hidden dimension :math:`h` [default: 50]</span>
<span class="sd">    :type hidden_dim: int</span>
<span class="sd">    :param activation: Activation function for broadcast tensor [default: torch.nn.ReLU()]</span>
<span class="sd">    :type activation: torch.nn.Module</span>
<span class="sd">    &quot;&quot;&quot;</span>

    <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">embed_dim</span><span class="p">,</span> <span class="n">hidden_dim</span><span class="p">,</span> <span class="n">activation</span><span class="o">=</span><span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">()):</span>
        <span class="nb">super</span><span class="p">(</span><span class="n">FullyConnected</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>

        <span class="bp">self</span><span class="o">.</span><span class="n">D</span> <span class="o">=</span> <span class="n">embed_dim</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">H</span> <span class="o">=</span> <span class="n">hidden_dim</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">conv</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">D</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">H</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">batchnorm</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">H</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">activation</span> <span class="o">=</span> <span class="n">activation</span>

<div class="viewcode-block" id="FullyConnected.forward"><a class="viewcode-back" href="../../../api/dscript.models.html#dscript.models.contact.FullyConnected.forward">[docs]</a>    <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">z0</span><span class="p">,</span> <span class="n">z1</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        :param z0: Projection module embedding :math:`(b \\times N \\times d)`</span>
<span class="sd">        :type z0: torch.Tensor</span>
<span class="sd">        :param z1: Projection module embedding :math:`(b \\times M \\times d)`</span>
<span class="sd">        :type z1: torch.Tensor</span>
<span class="sd">        :return: Predicted broadcast tensor :math:`(b \\times N \\times M \\times h)`</span>
<span class="sd">        :rtype: torch.Tensor</span>
<span class="sd">        &quot;&quot;&quot;</span>

        <span class="c1"># z0 is (b,N,d), z1 is (b,M,d)</span>
        <span class="n">z0</span> <span class="o">=</span> <span class="n">z0</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
        <span class="n">z1</span> <span class="o">=</span> <span class="n">z1</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
        <span class="c1"># z0 is (b,d,N), z1 is (b,d,M)</span>

        <span class="n">z_dif</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">abs</span><span class="p">(</span><span class="n">z0</span><span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span> <span class="o">-</span> <span class="n">z1</span><span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span>
        <span class="n">z_mul</span> <span class="o">=</span> <span class="n">z0</span><span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span> <span class="o">*</span> <span class="n">z1</span><span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span>
        <span class="n">z_cat</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">([</span><span class="n">z_dif</span><span class="p">,</span> <span class="n">z_mul</span><span class="p">],</span> <span class="mi">1</span><span class="p">)</span>

        <span class="n">b</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv</span><span class="p">(</span><span class="n">z_cat</span><span class="p">)</span>
        <span class="n">b</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">activation</span><span class="p">(</span><span class="n">b</span><span class="p">)</span>
        <span class="n">b</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">batchnorm</span><span class="p">(</span><span class="n">b</span><span class="p">)</span>

        <span class="k">return</span> <span class="n">b</span></div></div>


<div class="viewcode-block" id="ContactCNN"><a class="viewcode-back" href="../../../api/dscript.models.html#dscript.models.contact.ContactCNN">[docs]</a><span class="k">class</span> <span class="nc">ContactCNN</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">    Residue Contact Prediction Module. Takes embeddings from Projection module and produces contact map, output of Contact module.</span>

<span class="sd">    :param embed_dim: Output dimension of `dscript.models.embedding &lt;#module-dscript.models.embedding&gt;`_ model :math:`d` [default: 100]</span>
<span class="sd">    :type embed_dim: int</span>
<span class="sd">    :param hidden_dim: Hidden dimension :math:`h` [default: 50]</span>
<span class="sd">    :type hidden_dim: int</span>
<span class="sd">    :param width: Width of convolutional filter :math:`2w+1` [default: 7]</span>
<span class="sd">    :type width: int</span>
<span class="sd">    :param activation: Activation function for final contact map [default: torch.nn.Sigmoid()]</span>
<span class="sd">    :type activation: torch.nn.Module</span>
<span class="sd">    &quot;&quot;&quot;</span>

    <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">embed_dim</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> <span class="n">hidden_dim</span><span class="o">=</span><span class="mi">50</span><span class="p">,</span> <span class="n">width</span><span class="o">=</span><span class="mi">7</span><span class="p">,</span> <span class="n">activation</span><span class="o">=</span><span class="n">nn</span><span class="o">.</span><span class="n">Sigmoid</span><span class="p">()):</span>
        <span class="nb">super</span><span class="p">(</span><span class="n">ContactCNN</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>

        <span class="bp">self</span><span class="o">.</span><span class="n">hidden</span> <span class="o">=</span> <span class="n">FullyConnected</span><span class="p">(</span><span class="n">embed_dim</span><span class="p">,</span> <span class="n">hidden_dim</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">conv</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">hidden_dim</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">width</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="n">width</span> <span class="o">//</span> <span class="mi">2</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">batchnorm</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">activation</span> <span class="o">=</span> <span class="n">activation</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">clip</span><span class="p">()</span>

<div class="viewcode-block" id="ContactCNN.clip"><a class="viewcode-back" href="../../../api/dscript.models.html#dscript.models.contact.ContactCNN.clip">[docs]</a>    <span class="k">def</span> <span class="nf">clip</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        Force the convolutional layer to be transpose invariant.</span>

<span class="sd">        :meta private:</span>
<span class="sd">        &quot;&quot;&quot;</span>

        <span class="n">w</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv</span><span class="o">.</span><span class="n">weight</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">conv</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">data</span><span class="p">[:]</span> <span class="o">=</span> <span class="mf">0.5</span> <span class="o">*</span> <span class="p">(</span><span class="n">w</span> <span class="o">+</span> <span class="n">w</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">))</span></div>

<div class="viewcode-block" id="ContactCNN.forward"><a class="viewcode-back" href="../../../api/dscript.models.html#dscript.models.contact.ContactCNN.forward">[docs]</a>    <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">z0</span><span class="p">,</span> <span class="n">z1</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        :param z0: Projection module embedding :math:`(b \\times N \\times d)`</span>
<span class="sd">        :type z0: torch.Tensor</span>
<span class="sd">        :param z1: Projection module embedding :math:`(b \\times M \\times d)`</span>
<span class="sd">        :type z1: torch.Tensor</span>
<span class="sd">        :return: Predicted contact map :math:`(b \\times N \\times M)`</span>
<span class="sd">        :rtype: torch.Tensor</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="n">B</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">broadcast</span><span class="p">(</span><span class="n">z0</span><span class="p">,</span> <span class="n">z1</span><span class="p">)</span>
        <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">C</span><span class="p">)</span></div>

<div class="viewcode-block" id="ContactCNN.broadcast"><a class="viewcode-back" href="../../../api/dscript.models.html#dscript.models.contact.ContactCNN.broadcast">[docs]</a>    <span class="k">def</span> <span class="nf">broadcast</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">z0</span><span class="p">,</span> <span class="n">z1</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        Calls `dscript.models.contact.FullyConnected &lt;#module-dscript.models.contact.FullyConnected&gt;`_.</span>

<span class="sd">        :param z0: Projection module embedding :math:`(b \\times N \\times d)`</span>
<span class="sd">        :type z0: torch.Tensor</span>
<span class="sd">        :param z1: Projection module embedding :math:`(b \\times M \\times d)`</span>
<span class="sd">        :type z1: torch.Tensor</span>
<span class="sd">        :return: Predicted contact broadcast tensor :math:`(b \\times N \\times M \\times h)`</span>
<span class="sd">        :rtype: torch.Tensor</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="n">B</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">hidden</span><span class="p">(</span><span class="n">z0</span><span class="p">,</span> <span class="n">z1</span><span class="p">)</span>
        <span class="k">return</span> <span class="n">B</span></div>

<div class="viewcode-block" id="ContactCNN.predict"><a class="viewcode-back" href="../../../api/dscript.models.html#dscript.models.contact.ContactCNN.predict">[docs]</a>    <span class="k">def</span> <span class="nf">predict</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">B</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        Predict contact map from broadcast tensor.</span>

<span class="sd">        :param B: Predicted contact broadcast :math:`(b \\times N \\times M \\times h)`</span>
<span class="sd">        :type B: torch.Tensor</span>
<span class="sd">        :return: Predicted contact map :math:`(b \\times N \\times M)`</span>
<span class="sd">        :rtype: torch.Tensor</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="n">C</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv</span><span class="p">(</span><span class="n">B</span><span class="p">)</span>
        <span class="n">C</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">batchnorm</span><span class="p">(</span><span class="n">C</span><span class="p">)</span>
        <span class="n">C</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">activation</span><span class="p">(</span><span class="n">C</span><span class="p">)</span>
        <span class="k">return</span> <span class="n">C</span></div></div>
</pre></div>

           </div>
           
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        
        &copy; Copyright 2020, Samuel Sledzieski, Rohit Singh

    </p>
  </div>
    
    
    
    Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a
    
    <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a>
    
    provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  

  <script type="text/javascript">
      jQuery(function () {
          SphinxRtdTheme.Navigation.enable(true);
      });
  </script>

  
  
    
   

</body>
</html>