File size: 32,193 Bytes
8896a5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
<!DOCTYPE html>
<html class="writer-html5" lang="en" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>dscript.models.interaction — D-SCRIPT v1.0-beta documentation</title>
<link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
<!--[if lt IE 9]>
<script src="../../../_static/js/html5shiv.min.js"></script>
<![endif]-->
<script type="text/javascript" id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
<script src="../../../_static/jquery.js"></script>
<script src="../../../_static/underscore.js"></script>
<script src="../../../_static/doctools.js"></script>
<script type="text/javascript" src="../../../_static/js/theme.js"></script>
<link rel="index" title="Index" href="../../../genindex.html" />
<link rel="search" title="Search" href="../../../search.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="../../../index.html" class="icon icon-home"> D-SCRIPT
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../installation.html">Installation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../usage.html">Usage</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../data.html">Data</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../api/index.html">API</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../../../index.html">D-SCRIPT</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="../../../index.html" class="icon icon-home"></a> »</li>
<li><a href="../../index.html">Module code</a> »</li>
<li>dscript.models.interaction</li>
<li class="wy-breadcrumbs-aside">
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<h1>Source code for dscript.models.interaction</h1><div class="highlight"><pre>
<span></span><span class="sd">"""</span>
<span class="sd">Interaction model classes.</span>
<span class="sd">"""</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">torch</span>
<span class="kn">import</span> <span class="nn">torch.nn</span> <span class="k">as</span> <span class="nn">nn</span>
<span class="kn">import</span> <span class="nn">torch.functional</span> <span class="k">as</span> <span class="nn">F</span>
<div class="viewcode-block" id="LogisticActivation"><a class="viewcode-back" href="../../../api/dscript.models.html#dscript.models.interaction.LogisticActivation">[docs]</a><span class="k">class</span> <span class="nc">LogisticActivation</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> Implementation of Generalized Sigmoid</span>
<span class="sd"> Applies the element-wise function:</span>
<span class="sd"> :math:`\\sigma(x) = \\frac{1}{1 + \\exp(-k(x-x_0))}`</span>
<span class="sd"> :param x0: The value of the sigmoid midpoint</span>
<span class="sd"> :type x0: float</span>
<span class="sd"> :param k: The slope of the sigmoid - trainable - :math:`k \\geq 0`</span>
<span class="sd"> :type k: float</span>
<span class="sd"> :param train: Whether :math:`k` is a trainable parameter</span>
<span class="sd"> :type train: bool</span>
<span class="sd"> """</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x0</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">k</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">train</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">LogisticActivation</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">x0</span> <span class="o">=</span> <span class="n">x0</span>
<span class="bp">self</span><span class="o">.</span><span class="n">k</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">FloatTensor</span><span class="p">([</span><span class="nb">float</span><span class="p">(</span><span class="n">k</span><span class="p">)]))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">k</span><span class="o">.</span><span class="n">requiresGrad</span> <span class="o">=</span> <span class="n">train</span>
<div class="viewcode-block" id="LogisticActivation.forward"><a class="viewcode-back" href="../../../api/dscript.models.html#dscript.models.interaction.LogisticActivation.forward">[docs]</a> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> Applies the function to the input elementwise</span>
<span class="sd"> :param x: :math:`(N \\times *)` where :math:`*` means, any number of additional dimensions</span>
<span class="sd"> :type x: torch.Tensor</span>
<span class="sd"> :return: :math:`(N \\times *)`, same shape as the input</span>
<span class="sd"> :rtype: torch.Tensor</span>
<span class="sd"> """</span>
<span class="n">out</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">clamp</span><span class="p">(</span><span class="mi">1</span> <span class="o">/</span> <span class="p">(</span><span class="mi">1</span> <span class="o">+</span> <span class="n">torch</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="bp">self</span><span class="o">.</span><span class="n">k</span> <span class="o">*</span> <span class="p">(</span><span class="n">x</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">x0</span><span class="p">))),</span> <span class="nb">min</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">squeeze</span><span class="p">()</span>
<span class="k">return</span> <span class="n">out</span></div>
<span class="k">def</span> <span class="nf">clip</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> Restricts sigmoid slope :math:`k` to be greater than or equal to 0, if :math:`k` is trained.</span>
<span class="sd"> :meta private:</span>
<span class="sd"> """</span>
<span class="bp">self</span><span class="o">.</span><span class="n">k</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">clamp_</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span></div>
<div class="viewcode-block" id="ModelInteraction"><a class="viewcode-back" href="../../../api/dscript.models.html#dscript.models.interaction.ModelInteraction">[docs]</a><span class="k">class</span> <span class="nc">ModelInteraction</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> Main D-SCRIPT model. Contains an embedding and contact model and offers access to those models. Computes pooling operations on contact map to generate interaction probability.</span>
<span class="sd"> :param embedding: Embedding model</span>
<span class="sd"> :type embedding: dscript.models.embedding.FullyConnectedEmbed</span>
<span class="sd"> :param contact: Contact model</span>
<span class="sd"> :type contact: dscript.models.contact.ContactCNN</span>
<span class="sd"> :param use_cuda: Whether the model should be run on GPU</span>
<span class="sd"> :type use_cuda: bool</span>
<span class="sd"> :param pool_size: width of max-pool [default 9]</span>
<span class="sd"> :type pool_size: bool</span>
<span class="sd"> :param theta_init: initialization value of :math:`\\theta` for weight matrix [default: 1]</span>
<span class="sd"> :type theta_init: float</span>
<span class="sd"> :param lambda_init: initialization value of :math:`\\lambda` for weight matrix [default: 0]</span>
<span class="sd"> :type lambda_init: float</span>
<span class="sd"> :param gamma_init: initialization value of :math:`\\gamma` for global pooling [default: 0]</span>
<span class="sd"> :type gamma_init: float</span>
<span class="sd"> :param use_W: whether to use the weighting matrix [default: True]</span>
<span class="sd"> :type use_W: bool</span>
<span class="sd"> """</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">embedding</span><span class="p">,</span>
<span class="n">contact</span><span class="p">,</span>
<span class="n">pool_size</span><span class="o">=</span><span class="mi">9</span><span class="p">,</span>
<span class="n">theta_init</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">lambda_init</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">gamma_init</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">use_W</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">ModelInteraction</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">use_W</span> <span class="o">=</span> <span class="n">use_W</span>
<span class="bp">self</span><span class="o">.</span><span class="n">activation</span> <span class="o">=</span> <span class="n">LogisticActivation</span><span class="p">(</span><span class="n">x0</span><span class="o">=</span><span class="mf">0.5</span><span class="p">,</span> <span class="n">k</span><span class="o">=</span><span class="mi">20</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">embedding</span> <span class="o">=</span> <span class="n">embedding</span>
<span class="bp">self</span><span class="o">.</span><span class="n">contact</span> <span class="o">=</span> <span class="n">contact</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">use_W</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">theta</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">FloatTensor</span><span class="p">([</span><span class="n">theta_init</span><span class="p">]))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">lambda_</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">FloatTensor</span><span class="p">([</span><span class="n">lambda_init</span><span class="p">]))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">maxPool</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">MaxPool2d</span><span class="p">(</span><span class="n">pool_size</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="n">pool_size</span> <span class="o">//</span> <span class="mi">2</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">gamma</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">FloatTensor</span><span class="p">([</span><span class="n">gamma_init</span><span class="p">]))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">clip</span><span class="p">()</span>
<span class="k">def</span> <span class="nf">clip</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> Clamp model values</span>
<span class="sd"> :meta private:</span>
<span class="sd"> """</span>
<span class="bp">self</span><span class="o">.</span><span class="n">contact</span><span class="o">.</span><span class="n">clip</span><span class="p">()</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">use_W</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">theta</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">clamp_</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">lambda_</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">clamp_</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">gamma</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">clamp_</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<div class="viewcode-block" id="ModelInteraction.embed"><a class="viewcode-back" href="../../../api/dscript.models.html#dscript.models.interaction.ModelInteraction.embed">[docs]</a> <span class="k">def</span> <span class="nf">embed</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">z</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> Project down input language model embeddings into low dimension using projection module</span>
<span class="sd"> :param z: Language model embedding :math:`(b \\times N \\times d_0)`</span>
<span class="sd"> :type z: torch.Tensor</span>
<span class="sd"> :return: D-SCRIPT projection :math:`(b \\times N \\times d)`</span>
<span class="sd"> :rtype: torch.Tensor</span>
<span class="sd"> """</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">embedding</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="n">z</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">embedding</span><span class="p">(</span><span class="n">z</span><span class="p">)</span></div>
<div class="viewcode-block" id="ModelInteraction.cpred"><a class="viewcode-back" href="../../../api/dscript.models.html#dscript.models.interaction.ModelInteraction.cpred">[docs]</a> <span class="k">def</span> <span class="nf">cpred</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">z0</span><span class="p">,</span> <span class="n">z1</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> Project down input language model embeddings into low dimension using projection module</span>
<span class="sd"> :param z0: Language model embedding :math:`(b \\times N \\times d_0)`</span>
<span class="sd"> :type z0: torch.Tensor</span>
<span class="sd"> :param z1: Language model embedding :math:`(b \\times N \\times d_0)`</span>
<span class="sd"> :type z1: torch.Tensor</span>
<span class="sd"> :return: Predicted contact map :math:`(b \\times N \\times M)`</span>
<span class="sd"> :rtype: torch.Tensor</span>
<span class="sd"> """</span>
<span class="n">e0</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">embed</span><span class="p">(</span><span class="n">z0</span><span class="p">)</span>
<span class="n">e1</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">embed</span><span class="p">(</span><span class="n">z1</span><span class="p">)</span>
<span class="n">B</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">contact</span><span class="o">.</span><span class="n">broadcast</span><span class="p">(</span><span class="n">e0</span><span class="p">,</span> <span class="n">e1</span><span class="p">)</span>
<span class="n">C</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">contact</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">B</span><span class="p">)</span>
<span class="k">return</span> <span class="n">C</span></div>
<div class="viewcode-block" id="ModelInteraction.map_predict"><a class="viewcode-back" href="../../../api/dscript.models.html#dscript.models.interaction.ModelInteraction.map_predict">[docs]</a> <span class="k">def</span> <span class="nf">map_predict</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">z0</span><span class="p">,</span> <span class="n">z1</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> Project down input language model embeddings into low dimension using projection module</span>
<span class="sd"> :param z0: Language model embedding :math:`(b \\times N \\times d_0)`</span>
<span class="sd"> :type z0: torch.Tensor</span>
<span class="sd"> :param z1: Language model embedding :math:`(b \\times N \\times d_0)`</span>
<span class="sd"> :type z1: torch.Tensor</span>
<span class="sd"> :return: Predicted contact map, predicted probability of interaction :math:`(b \\times N \\times d_0), (1)`</span>
<span class="sd"> :rtype: torch.Tensor, torch.Tensor</span>
<span class="sd"> """</span>
<span class="n">C</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">cpred</span><span class="p">(</span><span class="n">z0</span><span class="p">,</span> <span class="n">z1</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">use_W</span><span class="p">:</span>
<span class="c1"># Create contact weighting matrix</span>
<span class="n">N</span><span class="p">,</span> <span class="n">M</span> <span class="o">=</span> <span class="n">C</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">2</span><span class="p">:]</span>
<span class="n">x1</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">from_numpy</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span> <span class="o">*</span> <span class="p">((</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">N</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span> <span class="o">-</span> <span class="p">((</span><span class="n">N</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="o">/</span> <span class="mi">2</span><span class="p">))</span> <span class="o">/</span> <span class="p">(</span><span class="o">-</span><span class="mi">1</span> <span class="o">*</span> <span class="p">((</span><span class="n">N</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)))</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">float</span><span class="p">()</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">gamma</span><span class="o">.</span><span class="n">device</span><span class="o">.</span><span class="n">type</span> <span class="o">==</span> <span class="s1">'cuda'</span><span class="p">:</span>
<span class="n">x1</span> <span class="o">=</span> <span class="n">x1</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span>
<span class="n">x1</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">lambda_</span> <span class="o">*</span> <span class="n">x1</span><span class="p">)</span>
<span class="n">x2</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">from_numpy</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span> <span class="o">*</span> <span class="p">((</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">M</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span> <span class="o">-</span> <span class="p">((</span><span class="n">M</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="o">/</span> <span class="mi">2</span><span class="p">))</span> <span class="o">/</span> <span class="p">(</span><span class="o">-</span><span class="mi">1</span> <span class="o">*</span> <span class="p">((</span><span class="n">M</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)))</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">float</span><span class="p">()</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">gamma</span><span class="o">.</span><span class="n">device</span><span class="o">.</span><span class="n">type</span> <span class="o">==</span> <span class="s1">'cuda'</span><span class="p">:</span>
<span class="n">x2</span> <span class="o">=</span> <span class="n">x2</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span>
<span class="n">x2</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">lambda_</span> <span class="o">*</span> <span class="n">x2</span><span class="p">)</span>
<span class="n">W</span> <span class="o">=</span> <span class="n">x1</span><span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span> <span class="o">*</span> <span class="n">x2</span>
<span class="n">W</span> <span class="o">=</span> <span class="p">(</span><span class="mi">1</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">theta</span><span class="p">)</span> <span class="o">*</span> <span class="n">W</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">theta</span>
<span class="n">yhat</span> <span class="o">=</span> <span class="n">C</span> <span class="o">*</span> <span class="n">W</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">yhat</span> <span class="o">=</span> <span class="n">C</span>
<span class="n">yhat</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">maxPool</span><span class="p">(</span><span class="n">yhat</span><span class="p">)</span>
<span class="c1"># Mean of contact predictions where p_ij > mu + gamma*sigma</span>
<span class="n">mu</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">yhat</span><span class="p">)</span>
<span class="n">sigma</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">var</span><span class="p">(</span><span class="n">yhat</span><span class="p">)</span>
<span class="n">Q</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="n">yhat</span> <span class="o">-</span> <span class="n">mu</span> <span class="o">-</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">gamma</span> <span class="o">*</span> <span class="n">sigma</span><span class="p">))</span>
<span class="n">phat</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">Q</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">sign</span><span class="p">(</span><span class="n">Q</span><span class="p">))</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">phat</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">activation</span><span class="p">(</span><span class="n">phat</span><span class="p">)</span>
<span class="k">return</span> <span class="n">C</span><span class="p">,</span> <span class="n">phat</span></div>
<div class="viewcode-block" id="ModelInteraction.predict"><a class="viewcode-back" href="../../../api/dscript.models.html#dscript.models.interaction.ModelInteraction.predict">[docs]</a> <span class="k">def</span> <span class="nf">predict</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">z0</span><span class="p">,</span> <span class="n">z1</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> Project down input language model embeddings into low dimension using projection module</span>
<span class="sd"> :param z0: Language model embedding :math:`(b \\times N \\times d_0)`</span>
<span class="sd"> :type z0: torch.Tensor</span>
<span class="sd"> :param z1: Language model embedding :math:`(b \\times N \\times d_0)`</span>
<span class="sd"> :type z1: torch.Tensor</span>
<span class="sd"> :return: Predicted probability of interaction</span>
<span class="sd"> :rtype: torch.Tensor, torch.Tensor</span>
<span class="sd"> """</span>
<span class="n">_</span><span class="p">,</span> <span class="n">phat</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">map_predict</span><span class="p">(</span><span class="n">z0</span><span class="p">,</span> <span class="n">z1</span><span class="p">)</span>
<span class="k">return</span> <span class="n">phat</span></div>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">z0</span><span class="p">,</span> <span class="n">z1</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> :meta private:</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">z0</span><span class="p">,</span> <span class="n">z1</span><span class="p">)</span></div>
</pre></div>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<p>
© Copyright 2020, Samuel Sledzieski, Rohit Singh.
</p>
</div>
Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
<a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html> |