File size: 32,193 Bytes
8896a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413


<!DOCTYPE html>
<html class="writer-html5" lang="en" >
<head>
  <meta charset="utf-8" />
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0" />
  
  <title>dscript.models.interaction &mdash; D-SCRIPT v1.0-beta documentation</title>
  

  
  <link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
  <link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />

  
  

  
  

  

  
  <!--[if lt IE 9]>
    <script src="../../../_static/js/html5shiv.min.js"></script>
  <![endif]-->
  
    
      <script type="text/javascript" id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
        <script src="../../../_static/jquery.js"></script>
        <script src="../../../_static/underscore.js"></script>
        <script src="../../../_static/doctools.js"></script>
    
    <script type="text/javascript" src="../../../_static/js/theme.js"></script>

    
    <link rel="index" title="Index" href="../../../genindex.html" />
    <link rel="search" title="Search" href="../../../search.html" /> 
</head>

<body class="wy-body-for-nav">

   
  <div class="wy-grid-for-nav">
    
    <nav data-toggle="wy-nav-shift" class="wy-nav-side">
      <div class="wy-side-scroll">
        <div class="wy-side-nav-search" >
          

          
            <a href="../../../index.html" class="icon icon-home"> D-SCRIPT
          

          
          </a>

          
            
            
          

          
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>

          
        </div>

        
        <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
          
            
            
              
            
            
              <ul>
<li class="toctree-l1"><a class="reference internal" href="../../../installation.html">Installation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../usage.html">Usage</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../data.html">Data</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../api/index.html">API</a></li>
</ul>

            
          
        </div>
        
      </div>
    </nav>

    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">

      
      <nav class="wy-nav-top" aria-label="top navigation">
        
          <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
          <a href="../../../index.html">D-SCRIPT</a>
        
      </nav>


      <div class="wy-nav-content">
        
        <div class="rst-content">
        
          

















<div role="navigation" aria-label="breadcrumbs navigation">

  <ul class="wy-breadcrumbs">
    
      <li><a href="../../../index.html" class="icon icon-home"></a> &raquo;</li>
        
          <li><a href="../../index.html">Module code</a> &raquo;</li>
        
      <li>dscript.models.interaction</li>
    
    
      <li class="wy-breadcrumbs-aside">
        
      </li>
    
  </ul>

  
  <hr/>
</div>
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <h1>Source code for dscript.models.interaction</h1><div class="highlight"><pre>
<span></span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">Interaction model classes.</span>
<span class="sd">&quot;&quot;&quot;</span>

<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>

<span class="kn">import</span> <span class="nn">torch</span>
<span class="kn">import</span> <span class="nn">torch.nn</span> <span class="k">as</span> <span class="nn">nn</span>
<span class="kn">import</span> <span class="nn">torch.functional</span> <span class="k">as</span> <span class="nn">F</span>


<div class="viewcode-block" id="LogisticActivation"><a class="viewcode-back" href="../../../api/dscript.models.html#dscript.models.interaction.LogisticActivation">[docs]</a><span class="k">class</span> <span class="nc">LogisticActivation</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">    Implementation of Generalized Sigmoid</span>
<span class="sd">    Applies the element-wise function:</span>

<span class="sd">    :math:`\\sigma(x) = \\frac{1}{1 + \\exp(-k(x-x_0))}`</span>

<span class="sd">    :param x0: The value of the sigmoid midpoint</span>
<span class="sd">    :type x0: float</span>
<span class="sd">    :param k: The slope of the sigmoid - trainable -  :math:`k \\geq 0`</span>
<span class="sd">    :type k: float</span>
<span class="sd">    :param train: Whether :math:`k` is a trainable parameter</span>
<span class="sd">    :type train: bool</span>
<span class="sd">    &quot;&quot;&quot;</span>

    <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x0</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">k</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">train</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
        <span class="nb">super</span><span class="p">(</span><span class="n">LogisticActivation</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">x0</span> <span class="o">=</span> <span class="n">x0</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">k</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">FloatTensor</span><span class="p">([</span><span class="nb">float</span><span class="p">(</span><span class="n">k</span><span class="p">)]))</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">k</span><span class="o">.</span><span class="n">requiresGrad</span> <span class="o">=</span> <span class="n">train</span>

<div class="viewcode-block" id="LogisticActivation.forward"><a class="viewcode-back" href="../../../api/dscript.models.html#dscript.models.interaction.LogisticActivation.forward">[docs]</a>    <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        Applies the function to the input elementwise</span>

<span class="sd">        :param x: :math:`(N \\times *)` where :math:`*` means, any number of additional dimensions</span>
<span class="sd">        :type x: torch.Tensor</span>
<span class="sd">        :return: :math:`(N \\times *)`, same shape as the input</span>
<span class="sd">        :rtype: torch.Tensor</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="n">out</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">clamp</span><span class="p">(</span><span class="mi">1</span> <span class="o">/</span> <span class="p">(</span><span class="mi">1</span> <span class="o">+</span> <span class="n">torch</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="bp">self</span><span class="o">.</span><span class="n">k</span> <span class="o">*</span> <span class="p">(</span><span class="n">x</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">x0</span><span class="p">))),</span> <span class="nb">min</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">squeeze</span><span class="p">()</span>
        <span class="k">return</span> <span class="n">out</span></div>

    <span class="k">def</span> <span class="nf">clip</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        Restricts sigmoid slope :math:`k` to be greater than or equal to 0, if :math:`k` is trained.</span>

<span class="sd">        :meta private:</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">k</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">clamp_</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span></div>


<div class="viewcode-block" id="ModelInteraction"><a class="viewcode-back" href="../../../api/dscript.models.html#dscript.models.interaction.ModelInteraction">[docs]</a><span class="k">class</span> <span class="nc">ModelInteraction</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">    Main D-SCRIPT model. Contains an embedding and contact model and offers access to those models. Computes pooling operations on contact map to generate interaction probability.</span>

<span class="sd">    :param embedding: Embedding model</span>
<span class="sd">    :type embedding: dscript.models.embedding.FullyConnectedEmbed</span>
<span class="sd">    :param contact: Contact model</span>
<span class="sd">    :type contact: dscript.models.contact.ContactCNN</span>
<span class="sd">    :param use_cuda: Whether the model should be run on GPU</span>
<span class="sd">    :type use_cuda: bool</span>
<span class="sd">    :param pool_size: width of max-pool [default 9]</span>
<span class="sd">    :type pool_size: bool</span>
<span class="sd">    :param theta_init: initialization value of :math:`\\theta` for weight matrix [default: 1]</span>
<span class="sd">    :type theta_init: float</span>
<span class="sd">    :param lambda_init: initialization value of :math:`\\lambda` for weight matrix [default: 0]</span>
<span class="sd">    :type lambda_init: float</span>
<span class="sd">    :param gamma_init: initialization value of :math:`\\gamma` for global pooling [default: 0]</span>
<span class="sd">    :type gamma_init: float</span>
<span class="sd">    :param use_W: whether to use the weighting matrix [default: True]</span>
<span class="sd">    :type use_W: bool</span>
<span class="sd">    &quot;&quot;&quot;</span>

    <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span>
        <span class="bp">self</span><span class="p">,</span>
        <span class="n">embedding</span><span class="p">,</span>
        <span class="n">contact</span><span class="p">,</span>
        <span class="n">pool_size</span><span class="o">=</span><span class="mi">9</span><span class="p">,</span>
        <span class="n">theta_init</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
        <span class="n">lambda_init</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
        <span class="n">gamma_init</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
        <span class="n">use_W</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
    <span class="p">):</span>
        <span class="nb">super</span><span class="p">(</span><span class="n">ModelInteraction</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">use_W</span> <span class="o">=</span> <span class="n">use_W</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">activation</span> <span class="o">=</span> <span class="n">LogisticActivation</span><span class="p">(</span><span class="n">x0</span><span class="o">=</span><span class="mf">0.5</span><span class="p">,</span> <span class="n">k</span><span class="o">=</span><span class="mi">20</span><span class="p">)</span>

        <span class="bp">self</span><span class="o">.</span><span class="n">embedding</span> <span class="o">=</span> <span class="n">embedding</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">contact</span> <span class="o">=</span> <span class="n">contact</span>

        <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">use_W</span><span class="p">:</span>
            <span class="bp">self</span><span class="o">.</span><span class="n">theta</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">FloatTensor</span><span class="p">([</span><span class="n">theta_init</span><span class="p">]))</span>
            <span class="bp">self</span><span class="o">.</span><span class="n">lambda_</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">FloatTensor</span><span class="p">([</span><span class="n">lambda_init</span><span class="p">]))</span>

        <span class="bp">self</span><span class="o">.</span><span class="n">maxPool</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">MaxPool2d</span><span class="p">(</span><span class="n">pool_size</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="n">pool_size</span> <span class="o">//</span> <span class="mi">2</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">gamma</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">FloatTensor</span><span class="p">([</span><span class="n">gamma_init</span><span class="p">]))</span>

        <span class="bp">self</span><span class="o">.</span><span class="n">clip</span><span class="p">()</span>

    <span class="k">def</span> <span class="nf">clip</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        Clamp model values</span>

<span class="sd">        :meta private:</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">contact</span><span class="o">.</span><span class="n">clip</span><span class="p">()</span>

        <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">use_W</span><span class="p">:</span>
            <span class="bp">self</span><span class="o">.</span><span class="n">theta</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">clamp_</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
            <span class="bp">self</span><span class="o">.</span><span class="n">lambda_</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">clamp_</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>

        <span class="bp">self</span><span class="o">.</span><span class="n">gamma</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">clamp_</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>

<div class="viewcode-block" id="ModelInteraction.embed"><a class="viewcode-back" href="../../../api/dscript.models.html#dscript.models.interaction.ModelInteraction.embed">[docs]</a>    <span class="k">def</span> <span class="nf">embed</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">z</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        Project down input language model embeddings into low dimension using projection module</span>

<span class="sd">        :param z: Language model embedding :math:`(b \\times N \\times d_0)`</span>
<span class="sd">        :type z: torch.Tensor</span>
<span class="sd">        :return: D-SCRIPT projection :math:`(b \\times N \\times d)`</span>
<span class="sd">        :rtype: torch.Tensor</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">embedding</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
            <span class="k">return</span> <span class="n">z</span>
        <span class="k">else</span><span class="p">:</span>
            <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">embedding</span><span class="p">(</span><span class="n">z</span><span class="p">)</span></div>

<div class="viewcode-block" id="ModelInteraction.cpred"><a class="viewcode-back" href="../../../api/dscript.models.html#dscript.models.interaction.ModelInteraction.cpred">[docs]</a>    <span class="k">def</span> <span class="nf">cpred</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">z0</span><span class="p">,</span> <span class="n">z1</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        Project down input language model embeddings into low dimension using projection module</span>

<span class="sd">        :param z0: Language model embedding :math:`(b \\times N \\times d_0)`</span>
<span class="sd">        :type z0: torch.Tensor</span>
<span class="sd">        :param z1: Language model embedding :math:`(b \\times N \\times d_0)`</span>
<span class="sd">        :type z1: torch.Tensor</span>
<span class="sd">        :return: Predicted contact map :math:`(b \\times N \\times M)`</span>
<span class="sd">        :rtype: torch.Tensor</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="n">e0</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">embed</span><span class="p">(</span><span class="n">z0</span><span class="p">)</span>
        <span class="n">e1</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">embed</span><span class="p">(</span><span class="n">z1</span><span class="p">)</span>
        <span class="n">B</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">contact</span><span class="o">.</span><span class="n">broadcast</span><span class="p">(</span><span class="n">e0</span><span class="p">,</span> <span class="n">e1</span><span class="p">)</span>
        <span class="n">C</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">contact</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">B</span><span class="p">)</span>
        <span class="k">return</span> <span class="n">C</span></div>

<div class="viewcode-block" id="ModelInteraction.map_predict"><a class="viewcode-back" href="../../../api/dscript.models.html#dscript.models.interaction.ModelInteraction.map_predict">[docs]</a>    <span class="k">def</span> <span class="nf">map_predict</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">z0</span><span class="p">,</span> <span class="n">z1</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        Project down input language model embeddings into low dimension using projection module</span>

<span class="sd">        :param z0: Language model embedding :math:`(b \\times N \\times d_0)`</span>
<span class="sd">        :type z0: torch.Tensor</span>
<span class="sd">        :param z1: Language model embedding :math:`(b \\times N \\times d_0)`</span>
<span class="sd">        :type z1: torch.Tensor</span>
<span class="sd">        :return: Predicted contact map, predicted probability of interaction :math:`(b \\times N \\times d_0), (1)`</span>
<span class="sd">        :rtype: torch.Tensor, torch.Tensor</span>
<span class="sd">        &quot;&quot;&quot;</span>

        <span class="n">C</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">cpred</span><span class="p">(</span><span class="n">z0</span><span class="p">,</span> <span class="n">z1</span><span class="p">)</span>

        <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">use_W</span><span class="p">:</span>
            <span class="c1"># Create contact weighting matrix</span>
            <span class="n">N</span><span class="p">,</span> <span class="n">M</span> <span class="o">=</span> <span class="n">C</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">2</span><span class="p">:]</span>

            <span class="n">x1</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">from_numpy</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span> <span class="o">*</span> <span class="p">((</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">N</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span> <span class="o">-</span> <span class="p">((</span><span class="n">N</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="o">/</span> <span class="mi">2</span><span class="p">))</span> <span class="o">/</span> <span class="p">(</span><span class="o">-</span><span class="mi">1</span> <span class="o">*</span> <span class="p">((</span><span class="n">N</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)))</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">float</span><span class="p">()</span>
            <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">gamma</span><span class="o">.</span><span class="n">device</span><span class="o">.</span><span class="n">type</span> <span class="o">==</span> <span class="s1">&#39;cuda&#39;</span><span class="p">:</span>
                <span class="n">x1</span> <span class="o">=</span> <span class="n">x1</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span>
            <span class="n">x1</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">lambda_</span> <span class="o">*</span> <span class="n">x1</span><span class="p">)</span>

            <span class="n">x2</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">from_numpy</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span> <span class="o">*</span> <span class="p">((</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">M</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span> <span class="o">-</span> <span class="p">((</span><span class="n">M</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="o">/</span> <span class="mi">2</span><span class="p">))</span> <span class="o">/</span> <span class="p">(</span><span class="o">-</span><span class="mi">1</span> <span class="o">*</span> <span class="p">((</span><span class="n">M</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)))</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">float</span><span class="p">()</span>
            <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">gamma</span><span class="o">.</span><span class="n">device</span><span class="o">.</span><span class="n">type</span> <span class="o">==</span> <span class="s1">&#39;cuda&#39;</span><span class="p">:</span>
                <span class="n">x2</span> <span class="o">=</span> <span class="n">x2</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span>
            <span class="n">x2</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">lambda_</span> <span class="o">*</span> <span class="n">x2</span><span class="p">)</span>

            <span class="n">W</span> <span class="o">=</span> <span class="n">x1</span><span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span> <span class="o">*</span> <span class="n">x2</span>
            <span class="n">W</span> <span class="o">=</span> <span class="p">(</span><span class="mi">1</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">theta</span><span class="p">)</span> <span class="o">*</span> <span class="n">W</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">theta</span>

            <span class="n">yhat</span> <span class="o">=</span> <span class="n">C</span> <span class="o">*</span> <span class="n">W</span>

        <span class="k">else</span><span class="p">:</span>
            <span class="n">yhat</span> <span class="o">=</span> <span class="n">C</span>

        <span class="n">yhat</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">maxPool</span><span class="p">(</span><span class="n">yhat</span><span class="p">)</span>

        <span class="c1"># Mean of contact predictions where p_ij &gt; mu + gamma*sigma</span>
        <span class="n">mu</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">yhat</span><span class="p">)</span>
        <span class="n">sigma</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">var</span><span class="p">(</span><span class="n">yhat</span><span class="p">)</span>
        <span class="n">Q</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="n">yhat</span> <span class="o">-</span> <span class="n">mu</span> <span class="o">-</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">gamma</span> <span class="o">*</span> <span class="n">sigma</span><span class="p">))</span>
        <span class="n">phat</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">Q</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">sign</span><span class="p">(</span><span class="n">Q</span><span class="p">))</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span>
        <span class="n">phat</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">activation</span><span class="p">(</span><span class="n">phat</span><span class="p">)</span>
        <span class="k">return</span> <span class="n">C</span><span class="p">,</span> <span class="n">phat</span></div>

<div class="viewcode-block" id="ModelInteraction.predict"><a class="viewcode-back" href="../../../api/dscript.models.html#dscript.models.interaction.ModelInteraction.predict">[docs]</a>    <span class="k">def</span> <span class="nf">predict</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">z0</span><span class="p">,</span> <span class="n">z1</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        Project down input language model embeddings into low dimension using projection module</span>

<span class="sd">        :param z0: Language model embedding :math:`(b \\times N \\times d_0)`</span>
<span class="sd">        :type z0: torch.Tensor</span>
<span class="sd">        :param z1: Language model embedding :math:`(b \\times N \\times d_0)`</span>
<span class="sd">        :type z1: torch.Tensor</span>
<span class="sd">        :return: Predicted probability of interaction</span>
<span class="sd">        :rtype: torch.Tensor, torch.Tensor</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="n">_</span><span class="p">,</span> <span class="n">phat</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">map_predict</span><span class="p">(</span><span class="n">z0</span><span class="p">,</span> <span class="n">z1</span><span class="p">)</span>
        <span class="k">return</span> <span class="n">phat</span></div>


    <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">z0</span><span class="p">,</span> <span class="n">z1</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        :meta private:</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">z0</span><span class="p">,</span> <span class="n">z1</span><span class="p">)</span></div>
</pre></div>

           </div>
           
          </div>
          <footer>

  <hr/>

  <div role="contentinfo">
    <p>
        &#169; Copyright 2020, Samuel Sledzieski, Rohit Singh.

    </p>
  </div>
    
    
    
    Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
    
    <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
    
    provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>
        </div>
      </div>

    </section>

  </div>
  

  <script type="text/javascript">
      jQuery(function () {
          SphinxRtdTheme.Navigation.enable(true);
      });
  </script>

  
  
    
   

</body>
</html>