File size: 40,458 Bytes
8896a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591


<!DOCTYPE html>
<html class="writer-html5" lang="en" >
<head>
  <meta charset="utf-8" />
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0" />
  
  <title>dscript.models &mdash; D-SCRIPT v1.0-beta documentation</title>
  

  
  <link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
  <link rel="stylesheet" href="../_static/pygments.css" type="text/css" />

  
  

  
  

  

  
  <!--[if lt IE 9]>
    <script src="../_static/js/html5shiv.min.js"></script>
  <![endif]-->
  
    
      <script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
        <script src="../_static/jquery.js"></script>
        <script src="../_static/underscore.js"></script>
        <script src="../_static/doctools.js"></script>
        <script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
    
    <script type="text/javascript" src="../_static/js/theme.js"></script>

    
    <link rel="index" title="Index" href="../genindex.html" />
    <link rel="search" title="Search" href="../search.html" />
    <link rel="prev" title="dscript.commands" href="dscript.commands.html" /> 
</head>

<body class="wy-body-for-nav">

   
  <div class="wy-grid-for-nav">
    
    <nav data-toggle="wy-nav-shift" class="wy-nav-side">
      <div class="wy-side-scroll">
        <div class="wy-side-nav-search" >
          

          
            <a href="../index.html" class="icon icon-home"> D-SCRIPT
          

          
          </a>

          
            
            
          

          
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>

          
        </div>

        
        <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
          
            
            
              
            
            
              <ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../installation.html">Installation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../usage.html">Usage</a></li>
<li class="toctree-l1"><a class="reference internal" href="../data.html">Data</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="index.html">API</a><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="dscript.commands.html">dscript.commands</a></li>
<li class="toctree-l2 current"><a class="current reference internal" href="#">dscript.models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#module-dscript.models.embedding">dscript.models.embedding</a></li>
<li class="toctree-l3"><a class="reference internal" href="#module-dscript.models.contact">dscript.models.contact</a></li>
<li class="toctree-l3"><a class="reference internal" href="#module-dscript.models.interaction">dscript.models.interaction</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="index.html#module-dscript.alphabets">dscript.alphabets</a></li>
<li class="toctree-l2"><a class="reference internal" href="index.html#module-dscript.fasta">dscript.fasta</a></li>
<li class="toctree-l2"><a class="reference internal" href="index.html#module-dscript.language_model">dscript.language_model</a></li>
<li class="toctree-l2"><a class="reference internal" href="index.html#module-dscript.pretrained">dscript.pretrained</a></li>
<li class="toctree-l2"><a class="reference internal" href="index.html#module-dscript.utils">dscript.utils</a></li>
</ul>
</li>
</ul>

            
          
        </div>
        
      </div>
    </nav>

    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">

      
      <nav class="wy-nav-top" aria-label="top navigation">
        
          <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
          <a href="../index.html">D-SCRIPT</a>
        
      </nav>


      <div class="wy-nav-content">
        
        <div class="rst-content">
        
          

















<div role="navigation" aria-label="breadcrumbs navigation">

  <ul class="wy-breadcrumbs">
    
      <li><a href="../index.html" class="icon icon-home"></a> &raquo;</li>
        
          <li><a href="index.html">API</a> &raquo;</li>
        
      <li>dscript.models</li>
    
    
      <li class="wy-breadcrumbs-aside">
        
          
            <a href="../_sources/api/dscript.models.rst.txt" rel="nofollow"> View page source</a>
          
        
      </li>
    
  </ul>

  
  <hr/>
</div>
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="dscript-models">
<h1>dscript.models<a class="headerlink" href="#dscript-models" title="Permalink to this headline">ΒΆ</a></h1>
<div class="section" id="module-dscript.models.embedding">
<span id="dscript-models-embedding"></span><h2>dscript.models.embedding<a class="headerlink" href="#module-dscript.models.embedding" title="Permalink to this headline">ΒΆ</a></h2>
<p>Embedding model classes.</p>
<dl class="py class">
<dt id="dscript.models.embedding.FullyConnectedEmbed">
<em class="property"><span class="pre">class</span> </em><code class="sig-prename descclassname"><span class="pre">dscript.models.embedding.</span></code><code class="sig-name descname"><span class="pre">FullyConnectedEmbed</span></code><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">nin</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">nout</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dropout</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">activation</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">ReLU()</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/dscript/models/embedding.html#FullyConnectedEmbed"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#dscript.models.embedding.FullyConnectedEmbed" title="Permalink to this definition">ΒΆ</a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">torch.nn.modules.module.Module</span></code></p>
<p>Protein Projection Module. Takes embedding from language model and outputs low-dimensional interaction aware projection.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>nin</strong> (<em>int</em>) – Size of language model output</p></li>
<li><p><strong>nout</strong> (<em>int</em>) – Dimension of projection</p></li>
<li><p><strong>dropout</strong> (<em>float</em>) – Proportion of weights to drop out [default: 0.5]</p></li>
<li><p><strong>activation</strong> (<em>torch.nn.Module</em>) – Activation for linear projection model</p></li>
</ul>
</dd>
</dl>
<dl class="py method">
<dt id="dscript.models.embedding.FullyConnectedEmbed.forward">
<code class="sig-name descname"><span class="pre">forward</span></code><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/dscript/models/embedding.html#FullyConnectedEmbed.forward"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#dscript.models.embedding.FullyConnectedEmbed.forward" title="Permalink to this definition">ΒΆ</a></dt>
<dd><dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>x</strong> (<em>torch.Tensor</em>) – Input language model embedding <span class="math notranslate nohighlight">\((b \times N \times d_0)\)</span></p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>Low dimensional projection of embedding</p>
</dd>
<dt class="field-odd">Return type</dt>
<dd class="field-odd"><p>torch.Tensor</p>
</dd>
</dl>
</dd></dl>

</dd></dl>

<dl class="py class">
<dt id="dscript.models.embedding.IdentityEmbed">
<em class="property"><span class="pre">class</span> </em><code class="sig-prename descclassname"><span class="pre">dscript.models.embedding.</span></code><code class="sig-name descname"><span class="pre">IdentityEmbed</span></code><a class="reference internal" href="../_modules/dscript/models/embedding.html#IdentityEmbed"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#dscript.models.embedding.IdentityEmbed" title="Permalink to this definition">ΒΆ</a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">torch.nn.modules.module.Module</span></code></p>
<p>Does not reduce the dimension of the language model embeddings, just passes them through to the contact model.</p>
<dl class="py method">
<dt id="dscript.models.embedding.IdentityEmbed.forward">
<code class="sig-name descname"><span class="pre">forward</span></code><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/dscript/models/embedding.html#IdentityEmbed.forward"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#dscript.models.embedding.IdentityEmbed.forward" title="Permalink to this definition">ΒΆ</a></dt>
<dd><dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>x</strong> (<em>torch.Tensor</em>) – Input language model embedding <span class="math notranslate nohighlight">\((b \times N \times d_0)\)</span></p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>Same embedding</p>
</dd>
<dt class="field-odd">Return type</dt>
<dd class="field-odd"><p>torch.Tensor</p>
</dd>
</dl>
</dd></dl>

</dd></dl>

<dl class="py class">
<dt id="dscript.models.embedding.SkipLSTM">
<em class="property"><span class="pre">class</span> </em><code class="sig-prename descclassname"><span class="pre">dscript.models.embedding.</span></code><code class="sig-name descname"><span class="pre">SkipLSTM</span></code><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">nin</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">21</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">nout</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">hidden_dim</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1024</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">num_layers</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">3</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dropout</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">bidirectional</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/dscript/models/embedding.html#SkipLSTM"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#dscript.models.embedding.SkipLSTM" title="Permalink to this definition">ΒΆ</a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">torch.nn.modules.module.Module</span></code></p>
<p>Language model from <a class="reference external" href="https://github.com/tbepler/protein-sequence-embedding-iclr2019">Bepler &amp; Berger</a>.</p>
<p>Loaded with pre-trained weights in embedding function.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>nin</strong> (<em>int</em>) – Input dimension of amino acid one-hot [default: 21]</p></li>
<li><p><strong>nout</strong> (<em>int</em>) – Output dimension of final layer [default: 100]</p></li>
<li><p><strong>hidden_dim</strong> (<em>int</em>) – Size of hidden dimension [default: 1024]</p></li>
<li><p><strong>num_layers</strong> (<em>int</em>) – Number of stacked LSTM models [default: 3]</p></li>
<li><p><strong>dropout</strong> (<em>float</em>) – Proportion of weights to drop out [default: 0]</p></li>
<li><p><strong>bidirectional</strong> (<em>bool</em>) – Whether to use biLSTM vs. LSTM</p></li>
</ul>
</dd>
</dl>
<dl class="py method">
<dt id="dscript.models.embedding.SkipLSTM.to_one_hot">
<code class="sig-name descname"><span class="pre">to_one_hot</span></code><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/dscript/models/embedding.html#SkipLSTM.to_one_hot"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#dscript.models.embedding.SkipLSTM.to_one_hot" title="Permalink to this definition">ΒΆ</a></dt>
<dd><p>Transform numeric encoded amino acid vector to one-hot encoded vector</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>x</strong> (<em>torch.Tensor</em>) – Input numeric amino acid encoding <span class="math notranslate nohighlight">\((N)\)</span></p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>One-hot encoding vector <span class="math notranslate nohighlight">\((N \times n_{in})\)</span></p>
</dd>
<dt class="field-odd">Return type</dt>
<dd class="field-odd"><p>torch.Tensor</p>
</dd>
</dl>
</dd></dl>

<dl class="py method">
<dt id="dscript.models.embedding.SkipLSTM.transform">
<code class="sig-name descname"><span class="pre">transform</span></code><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/dscript/models/embedding.html#SkipLSTM.transform"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#dscript.models.embedding.SkipLSTM.transform" title="Permalink to this definition">ΒΆ</a></dt>
<dd><dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>x</strong> (<em>torch.Tensor</em>) – Input numeric amino acid encoding <span class="math notranslate nohighlight">\((N)\)</span></p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>Concatenation of all hidden layers <span class="math notranslate nohighlight">\((N \times (n_{in} + 2 \times \text{num_layers} \times \text{hidden_dim}))\)</span></p>
</dd>
<dt class="field-odd">Return type</dt>
<dd class="field-odd"><p>torch.Tensor</p>
</dd>
</dl>
</dd></dl>

</dd></dl>

</div>
<div class="section" id="module-dscript.models.contact">
<span id="dscript-models-contact"></span><h2>dscript.models.contact<a class="headerlink" href="#module-dscript.models.contact" title="Permalink to this headline">ΒΆ</a></h2>
<p>Contact model classes.</p>
<dl class="py class">
<dt id="dscript.models.contact.ContactCNN">
<em class="property"><span class="pre">class</span> </em><code class="sig-prename descclassname"><span class="pre">dscript.models.contact.</span></code><code class="sig-name descname"><span class="pre">ContactCNN</span></code><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">embed_dim</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">hidden_dim</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">50</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">width</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">7</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">activation</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">Sigmoid()</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/dscript/models/contact.html#ContactCNN"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#dscript.models.contact.ContactCNN" title="Permalink to this definition">ΒΆ</a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">torch.nn.modules.module.Module</span></code></p>
<p>Residue Contact Prediction Module. Takes embeddings from Projection module and produces contact map, output of Contact module.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>embed_dim</strong> (<em>int</em>) – <p>Output dimension of <a class="reference external" href="#module-dscript.models.embedding">dscript.models.embedding</a> model <span class="math notranslate nohighlight">\(d\)</span> [default: 100]</p>
</p></li>
<li><p><strong>hidden_dim</strong> (<em>int</em>) – Hidden dimension <span class="math notranslate nohighlight">\(h\)</span> [default: 50]</p></li>
<li><p><strong>width</strong> (<em>int</em>) – Width of convolutional filter <span class="math notranslate nohighlight">\(2w+1\)</span> [default: 7]</p></li>
<li><p><strong>activation</strong> (<em>torch.nn.Module</em>) – Activation function for final contact map [default: torch.nn.Sigmoid()]</p></li>
</ul>
</dd>
</dl>
<dl class="py method">
<dt id="dscript.models.contact.ContactCNN.broadcast">
<code class="sig-name descname"><span class="pre">broadcast</span></code><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">z0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">z1</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/dscript/models/contact.html#ContactCNN.broadcast"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#dscript.models.contact.ContactCNN.broadcast" title="Permalink to this definition">ΒΆ</a></dt>
<dd><p>Calls <a class="reference external" href="#module-dscript.models.contact.FullyConnected">dscript.models.contact.FullyConnected</a>.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>z0</strong> (<em>torch.Tensor</em>) – Projection module embedding <span class="math notranslate nohighlight">\((b \times N \times d)\)</span></p></li>
<li><p><strong>z1</strong> (<em>torch.Tensor</em>) – Projection module embedding <span class="math notranslate nohighlight">\((b \times M \times d)\)</span></p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>Predicted contact broadcast tensor <span class="math notranslate nohighlight">\((b \times N \times M \times h)\)</span></p>
</dd>
<dt class="field-odd">Return type</dt>
<dd class="field-odd"><p>torch.Tensor</p>
</dd>
</dl>
</dd></dl>

<dl class="py method">
<dt id="dscript.models.contact.ContactCNN.forward">
<code class="sig-name descname"><span class="pre">forward</span></code><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">z0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">z1</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/dscript/models/contact.html#ContactCNN.forward"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#dscript.models.contact.ContactCNN.forward" title="Permalink to this definition">ΒΆ</a></dt>
<dd><dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>z0</strong> (<em>torch.Tensor</em>) – Projection module embedding <span class="math notranslate nohighlight">\((b \times N \times d)\)</span></p></li>
<li><p><strong>z1</strong> (<em>torch.Tensor</em>) – Projection module embedding <span class="math notranslate nohighlight">\((b \times M \times d)\)</span></p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>Predicted contact map <span class="math notranslate nohighlight">\((b \times N \times M)\)</span></p>
</dd>
<dt class="field-odd">Return type</dt>
<dd class="field-odd"><p>torch.Tensor</p>
</dd>
</dl>
</dd></dl>

<dl class="py method">
<dt id="dscript.models.contact.ContactCNN.predict">
<code class="sig-name descname"><span class="pre">predict</span></code><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">B</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/dscript/models/contact.html#ContactCNN.predict"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#dscript.models.contact.ContactCNN.predict" title="Permalink to this definition">ΒΆ</a></dt>
<dd><p>Predict contact map from broadcast tensor.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>B</strong> (<em>torch.Tensor</em>) – Predicted contact broadcast <span class="math notranslate nohighlight">\((b \times N \times M \times h)\)</span></p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>Predicted contact map <span class="math notranslate nohighlight">\((b \times N \times M)\)</span></p>
</dd>
<dt class="field-odd">Return type</dt>
<dd class="field-odd"><p>torch.Tensor</p>
</dd>
</dl>
</dd></dl>

</dd></dl>

<dl class="py class">
<dt id="dscript.models.contact.FullyConnected">
<em class="property"><span class="pre">class</span> </em><code class="sig-prename descclassname"><span class="pre">dscript.models.contact.</span></code><code class="sig-name descname"><span class="pre">FullyConnected</span></code><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">embed_dim</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">hidden_dim</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">activation</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">ReLU()</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/dscript/models/contact.html#FullyConnected"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#dscript.models.contact.FullyConnected" title="Permalink to this definition">ΒΆ</a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">torch.nn.modules.module.Module</span></code></p>
<p>Performs part 1 of Contact Prediction Module. Takes embeddings from Projection module and produces broadcast tensor.</p>
<p>Input embeddings of dimension <span class="math notranslate nohighlight">\(d\)</span> are combined into a <span class="math notranslate nohighlight">\(2d\)</span> length MLP input <span class="math notranslate nohighlight">\(z_{cat}\)</span>, where <span class="math notranslate nohighlight">\(z_{cat} = [z_0 \ominus z_1 | z_0 \odot z_1]\)</span></p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>embed_dim</strong> (<em>int</em>) – <p>Output dimension of <a class="reference external" href="#module-dscript.models.embedding">dscript.models.embedding</a> model <span class="math notranslate nohighlight">\(d\)</span> [default: 100]</p>
</p></li>
<li><p><strong>hidden_dim</strong> (<em>int</em>) – Hidden dimension <span class="math notranslate nohighlight">\(h\)</span> [default: 50]</p></li>
<li><p><strong>activation</strong> (<em>torch.nn.Module</em>) – Activation function for broadcast tensor [default: torch.nn.ReLU()]</p></li>
</ul>
</dd>
</dl>
<dl class="py method">
<dt id="dscript.models.contact.FullyConnected.forward">
<code class="sig-name descname"><span class="pre">forward</span></code><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">z0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">z1</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/dscript/models/contact.html#FullyConnected.forward"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#dscript.models.contact.FullyConnected.forward" title="Permalink to this definition">ΒΆ</a></dt>
<dd><dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>z0</strong> (<em>torch.Tensor</em>) – Projection module embedding <span class="math notranslate nohighlight">\((b \times N \times d)\)</span></p></li>
<li><p><strong>z1</strong> (<em>torch.Tensor</em>) – Projection module embedding <span class="math notranslate nohighlight">\((b \times M \times d)\)</span></p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>Predicted broadcast tensor <span class="math notranslate nohighlight">\((b \times N \times M \times h)\)</span></p>
</dd>
<dt class="field-odd">Return type</dt>
<dd class="field-odd"><p>torch.Tensor</p>
</dd>
</dl>
</dd></dl>

</dd></dl>

</div>
<div class="section" id="module-dscript.models.interaction">
<span id="dscript-models-interaction"></span><h2>dscript.models.interaction<a class="headerlink" href="#module-dscript.models.interaction" title="Permalink to this headline">ΒΆ</a></h2>
<p>Interaction model classes.</p>
<dl class="py class">
<dt id="dscript.models.interaction.LogisticActivation">
<em class="property"><span class="pre">class</span> </em><code class="sig-prename descclassname"><span class="pre">dscript.models.interaction.</span></code><code class="sig-name descname"><span class="pre">LogisticActivation</span></code><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x0</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">k</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">train</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/dscript/models/interaction.html#LogisticActivation"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#dscript.models.interaction.LogisticActivation" title="Permalink to this definition">ΒΆ</a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">torch.nn.modules.module.Module</span></code></p>
<p>Implementation of Generalized Sigmoid
Applies the element-wise function:</p>
<p><span class="math notranslate nohighlight">\(\sigma(x) = \frac{1}{1 + \exp(-k(x-x_0))}\)</span></p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>x0</strong> (<em>float</em>) – The value of the sigmoid midpoint</p></li>
<li><p><strong>k</strong> (<em>float</em>) – The slope of the sigmoid - trainable -  <span class="math notranslate nohighlight">\(k \geq 0\)</span></p></li>
<li><p><strong>train</strong> (<em>bool</em>) – Whether <span class="math notranslate nohighlight">\(k\)</span> is a trainable parameter</p></li>
</ul>
</dd>
</dl>
<dl class="py method">
<dt id="dscript.models.interaction.LogisticActivation.forward">
<code class="sig-name descname"><span class="pre">forward</span></code><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/dscript/models/interaction.html#LogisticActivation.forward"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#dscript.models.interaction.LogisticActivation.forward" title="Permalink to this definition">ΒΆ</a></dt>
<dd><p>Applies the function to the input elementwise</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>x</strong> (<em>torch.Tensor</em>) – <span class="math notranslate nohighlight">\((N \times *)\)</span> where <span class="math notranslate nohighlight">\(*\)</span> means, any number of additional dimensions</p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p><span class="math notranslate nohighlight">\((N \times *)\)</span>, same shape as the input</p>
</dd>
<dt class="field-odd">Return type</dt>
<dd class="field-odd"><p>torch.Tensor</p>
</dd>
</dl>
</dd></dl>

</dd></dl>

<dl class="py class">
<dt id="dscript.models.interaction.ModelInteraction">
<em class="property"><span class="pre">class</span> </em><code class="sig-prename descclassname"><span class="pre">dscript.models.interaction.</span></code><code class="sig-name descname"><span class="pre">ModelInteraction</span></code><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">embedding</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">contact</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pool_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">9</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">theta_init</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">lambda_init</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">gamma_init</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">use_W</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/dscript/models/interaction.html#ModelInteraction"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#dscript.models.interaction.ModelInteraction" title="Permalink to this definition">ΒΆ</a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">torch.nn.modules.module.Module</span></code></p>
<p>Main D-SCRIPT model. Contains an embedding and contact model and offers access to those models. Computes pooling operations on contact map to generate interaction probability.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>embedding</strong> (<a class="reference internal" href="#dscript.models.embedding.FullyConnectedEmbed" title="dscript.models.embedding.FullyConnectedEmbed"><em>dscript.models.embedding.FullyConnectedEmbed</em></a>) – Embedding model</p></li>
<li><p><strong>contact</strong> (<a class="reference internal" href="#dscript.models.contact.ContactCNN" title="dscript.models.contact.ContactCNN"><em>dscript.models.contact.ContactCNN</em></a>) – Contact model</p></li>
<li><p><strong>use_cuda</strong> (<em>bool</em>) – Whether the model should be run on GPU</p></li>
<li><p><strong>pool_size</strong> (<em>bool</em>) – width of max-pool [default 9]</p></li>
<li><p><strong>theta_init</strong> (<em>float</em>) – initialization value of <span class="math notranslate nohighlight">\(\theta\)</span> for weight matrix [default: 1]</p></li>
<li><p><strong>lambda_init</strong> (<em>float</em>) – initialization value of <span class="math notranslate nohighlight">\(\lambda\)</span> for weight matrix [default: 0]</p></li>
<li><p><strong>gamma_init</strong> (<em>float</em>) – initialization value of <span class="math notranslate nohighlight">\(\gamma\)</span> for global pooling [default: 0]</p></li>
<li><p><strong>use_W</strong> (<em>bool</em>) – whether to use the weighting matrix [default: True]</p></li>
</ul>
</dd>
</dl>
<dl class="py method">
<dt id="dscript.models.interaction.ModelInteraction.cpred">
<code class="sig-name descname"><span class="pre">cpred</span></code><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">z0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">z1</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/dscript/models/interaction.html#ModelInteraction.cpred"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#dscript.models.interaction.ModelInteraction.cpred" title="Permalink to this definition">ΒΆ</a></dt>
<dd><p>Project down input language model embeddings into low dimension using projection module</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>z0</strong> (<em>torch.Tensor</em>) – Language model embedding <span class="math notranslate nohighlight">\((b \times N \times d_0)\)</span></p></li>
<li><p><strong>z1</strong> (<em>torch.Tensor</em>) – Language model embedding <span class="math notranslate nohighlight">\((b \times N \times d_0)\)</span></p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>Predicted contact map <span class="math notranslate nohighlight">\((b \times N \times M)\)</span></p>
</dd>
<dt class="field-odd">Return type</dt>
<dd class="field-odd"><p>torch.Tensor</p>
</dd>
</dl>
</dd></dl>

<dl class="py method">
<dt id="dscript.models.interaction.ModelInteraction.embed">
<code class="sig-name descname"><span class="pre">embed</span></code><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">z</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/dscript/models/interaction.html#ModelInteraction.embed"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#dscript.models.interaction.ModelInteraction.embed" title="Permalink to this definition">ΒΆ</a></dt>
<dd><p>Project down input language model embeddings into low dimension using projection module</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>z</strong> (<em>torch.Tensor</em>) – Language model embedding <span class="math notranslate nohighlight">\((b \times N \times d_0)\)</span></p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>D-SCRIPT projection <span class="math notranslate nohighlight">\((b \times N \times d)\)</span></p>
</dd>
<dt class="field-odd">Return type</dt>
<dd class="field-odd"><p>torch.Tensor</p>
</dd>
</dl>
</dd></dl>

<dl class="py method">
<dt id="dscript.models.interaction.ModelInteraction.map_predict">
<code class="sig-name descname"><span class="pre">map_predict</span></code><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">z0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">z1</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/dscript/models/interaction.html#ModelInteraction.map_predict"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#dscript.models.interaction.ModelInteraction.map_predict" title="Permalink to this definition">ΒΆ</a></dt>
<dd><p>Project down input language model embeddings into low dimension using projection module</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>z0</strong> (<em>torch.Tensor</em>) – Language model embedding <span class="math notranslate nohighlight">\((b \times N \times d_0)\)</span></p></li>
<li><p><strong>z1</strong> (<em>torch.Tensor</em>) – Language model embedding <span class="math notranslate nohighlight">\((b \times N \times d_0)\)</span></p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>Predicted contact map, predicted probability of interaction <span class="math notranslate nohighlight">\((b \times N \times d_0), (1)\)</span></p>
</dd>
<dt class="field-odd">Return type</dt>
<dd class="field-odd"><p>torch.Tensor, torch.Tensor</p>
</dd>
</dl>
</dd></dl>

<dl class="py method">
<dt id="dscript.models.interaction.ModelInteraction.predict">
<code class="sig-name descname"><span class="pre">predict</span></code><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">z0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">z1</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/dscript/models/interaction.html#ModelInteraction.predict"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#dscript.models.interaction.ModelInteraction.predict" title="Permalink to this definition">ΒΆ</a></dt>
<dd><p>Project down input language model embeddings into low dimension using projection module</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>z0</strong> (<em>torch.Tensor</em>) – Language model embedding <span class="math notranslate nohighlight">\((b \times N \times d_0)\)</span></p></li>
<li><p><strong>z1</strong> (<em>torch.Tensor</em>) – Language model embedding <span class="math notranslate nohighlight">\((b \times N \times d_0)\)</span></p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>Predicted probability of interaction</p>
</dd>
<dt class="field-odd">Return type</dt>
<dd class="field-odd"><p>torch.Tensor, torch.Tensor</p>
</dd>
</dl>
</dd></dl>

</dd></dl>

</div>
</div>


           </div>
           
          </div>
          <footer>
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
        <a href="dscript.commands.html" class="btn btn-neutral float-left" title="dscript.commands" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
    </div>

  <hr/>

  <div role="contentinfo">
    <p>
        &#169; Copyright 2020, Samuel Sledzieski, Rohit Singh.

    </p>
  </div>
    
    
    
    Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
    
    <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
    
    provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>
        </div>
      </div>

    </section>

  </div>
  

  <script type="text/javascript">
      jQuery(function () {
          SphinxRtdTheme.Navigation.enable(true);
      });
  </script>

  
  
    
   

</body>
</html>