File size: 4,874 Bytes
8896a5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
"""
Evaluate a trained model.
"""
import sys, os
import argparse
import numpy as np
import pandas as pd
import torch
import h5py
import datetime
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
from sklearn.metrics import (
precision_recall_curve,
average_precision_score,
roc_curve,
roc_auc_score,
)
from tqdm import tqdm
def add_args(parser):
"""
Create parser for command line utility.
:meta private:
"""
parser.add_argument("--model", help="Trained prediction model", required=True)
parser.add_argument("--test", help="Test Data", required=True)
parser.add_argument("--embedding", help="h5 file with embedded sequences", required=True)
parser.add_argument("-o", "--outfile", help="Output file to write results")
parser.add_argument("-d", "--device", type=int, default=-1, help="Compute device to use")
return parser
def plot_eval_predictions(labels, predictions, path="figure"):
"""
Plot histogram of positive and negative predictions, precision-recall curve, and receiver operating characteristic curve.
:param y: Labels
:type y: np.ndarray
:param phat: Predicted probabilities
:type phat: np.ndarray
:param path: File prefix for plots to be saved to [default: figure]
:type path: str
"""
pos_phat = predictions[labels == 1]
neg_phat = predictions[labels == 0]
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.suptitle("Distribution of Predictions")
ax1.hist(pos_phat)
ax1.set_xlim(0, 1)
ax1.set_title("Positive")
ax1.set_xlabel("p-hat")
ax2.hist(neg_phat)
ax2.set_xlim(0, 1)
ax2.set_title("Negative")
ax2.set_xlabel("p-hat")
plt.savefig(path + ".phat_dist.png")
plt.close()
precision, recall, pr_thresh = precision_recall_curve(labels, predictions)
aupr = average_precision_score(labels, predictions)
print("AUPR:", aupr)
plt.step(recall, precision, color="b", alpha=0.2, where="post")
plt.fill_between(recall, precision, step="post", alpha=0.2, color="b")
plt.xlabel("Recall")
plt.ylabel("Precision")
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.title("Precision-Recall (AUPR: {:.3})".format(aupr))
plt.savefig(path + ".aupr.png")
plt.close()
fpr, tpr, roc_thresh = roc_curve(labels, predictions)
auroc = roc_auc_score(labels, predictions)
print("AUROC:", auroc)
plt.step(fpr, tpr, color="b", alpha=0.2, where="post")
plt.fill_between(fpr, tpr, step="post", alpha=0.2, color="b")
plt.xlabel("FPR")
plt.ylabel("TPR")
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.title("Receiver Operating Characteristic (AUROC: {:.3})".format(auroc))
plt.savefig(path + ".auroc.png")
plt.close()
def main(args):
"""
Run model evaluation from arguments.
:meta private:
"""
# Set Device
device = args.device
use_cuda = (device >= 0) and torch.cuda.is_available()
if use_cuda:
torch.cuda.set_device(device)
print(f"# Using CUDA device {device} - {torch.cuda.get_device_name(device)}")
else:
print("# Using CPU")
# Load Model
model_path = args.model
if use_cuda:
model = torch.load(model_path).cuda()
else:
model = torch.load(model_path).cpu()
model.use_cuda = False
embeddingPath = args.embedding
h5fi = h5py.File(embeddingPath, "r")
# Load Pairs
test_fi = args.test
test_df = pd.read_csv(test_fi, sep="\t", header=None)
if args.outfile is None:
outPath = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M")
else:
outPath = args.outfile
outFile = open(outPath + ".predictions.tsv", "w+")
allProteins = set(test_df[0]).union(test_df[1])
seqEmbDict = {}
for i in tqdm(allProteins, desc="Loading embeddings"):
seqEmbDict[i] = torch.from_numpy(h5fi[i][:]).float()
model.eval()
with torch.no_grad():
phats = []
labels = []
for _, (n0, n1, label) in tqdm(test_df.iterrows(), total=len(test_df), desc="Predicting pairs"):
try:
p0 = seqEmbDict[n0]
p1 = seqEmbDict[n1]
if use_cuda:
p0 = p0.cuda()
p1 = p1.cuda()
pred = model.predict(p0, p1).item()
phats.append(pred)
labels.append(label)
print("{}\t{}\t{}\t{:.5}".format(n0, n1, label, pred), file=outFile)
except Exception as e:
sys.stderr.write("{} x {} - {}".format(n0, n1, e))
phats = np.array(phats)
labels = np.array(labels)
plot_eval_predictions(labels, phats, outPath)
outFile.close()
h5fi.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description=__doc__)
add_args(parser)
main(parser.parse_args())
|