File size: 5,351 Bytes
8896a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
"""
Embedding model classes.
"""

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils.rnn import PackedSequence


class IdentityEmbed(nn.Module):
    """
    Does not reduce the dimension of the language model embeddings, just passes them through to the contact model.
    """
    def forward(self, x):
        """
        :param x: Input language model embedding :math:`(b \\times N \\times d_0)`
        :type x: torch.Tensor
        :return: Same embedding
        :rtype: torch.Tensor
        """
        return x


class FullyConnectedEmbed(nn.Module):
    """
    Protein Projection Module. Takes embedding from language model and outputs low-dimensional interaction aware projection.

    :param nin: Size of language model output
    :type nin: int
    :param nout: Dimension of projection
    :type nout: int
    :param dropout: Proportion of weights to drop out [default: 0.5]
    :type dropout: float
    :param activation: Activation for linear projection model
    :type activation: torch.nn.Module
    """
    def __init__(self, nin, nout, dropout=0.5, activation=nn.ReLU()):
        super(FullyConnectedEmbed, self).__init__()
        self.nin = nin
        self.nout = nout
        self.dropout_p = dropout

        self.transform = nn.Linear(nin, nout)
        self.drop = nn.Dropout(p=self.dropout_p)
        self.activation = activation

    def forward(self, x):
        """
        :param x: Input language model embedding :math:`(b \\times N \\times d_0)`
        :type x: torch.Tensor
        :return: Low dimensional projection of embedding
        :rtype: torch.Tensor
        """
        t = self.transform(x)
        t = self.activation(t)
        t = self.drop(t)
        return t


class SkipLSTM(nn.Module):
    """
    Language model from `Bepler & Berger <https://github.com/tbepler/protein-sequence-embedding-iclr2019>`_.

    Loaded with pre-trained weights in embedding function.

    :param nin: Input dimension of amino acid one-hot [default: 21]
    :type nin: int
    :param nout: Output dimension of final layer [default: 100]
    :type nout: int
    :param hidden_dim: Size of hidden dimension [default: 1024]
    :type hidden_dim: int
    :param num_layers: Number of stacked LSTM models [default: 3]
    :type num_layers: int
    :param dropout: Proportion of weights to drop out [default: 0]
    :type dropout: float
    :param bidirectional: Whether to use biLSTM vs. LSTM
    :type bidirectional: bool
    """
    def __init__(self, nin=21, nout=100, hidden_dim=1024, num_layers=3, dropout=0, bidirectional=True):
        super(SkipLSTM, self).__init__()

        self.nin = nin
        self.nout = nout

        self.dropout = nn.Dropout(p=dropout)

        self.layers = nn.ModuleList()
        dim = nin
        for i in range(num_layers):
            f = nn.LSTM(dim, hidden_dim, 1, batch_first=True, bidirectional=bidirectional)
            self.layers.append(f)
            if bidirectional:
                dim = 2 * hidden_dim
            else:
                dim = hidden_dim

        n = hidden_dim * num_layers + nin
        if bidirectional:
            n = 2 * hidden_dim * num_layers + nin

        self.proj = nn.Linear(n, nout)

    def to_one_hot(self, x):
        """
        Transform numeric encoded amino acid vector to one-hot encoded vector

        :param x: Input numeric amino acid encoding :math:`(N)`
        :type x: torch.Tensor
        :return: One-hot encoding vector :math:`(N \\times n_{in})`
        :rtype: torch.Tensor
        """
        packed = type(x) is PackedSequence
        if packed:
            one_hot = x.data.new(x.data.size(0), self.nin).float().zero_()
            one_hot.scatter_(1, x.data.unsqueeze(1), 1)
            one_hot = PackedSequence(one_hot, x.batch_sizes)
        else:
            one_hot = x.new(x.size(0), x.size(1), self.nin).float().zero_()
            one_hot.scatter_(2, x.unsqueeze(2), 1)
        return one_hot

    def transform(self, x):
        """
        :param x: Input numeric amino acid encoding :math:`(N)`
        :type x: torch.Tensor
        :return: Concatenation of all hidden layers :math:`(N \\times (n_{in} + 2 \\times \\text{num_layers} \\times \\text{hidden_dim}))`
        :rtype: torch.Tensor
        """
        one_hot = self.to_one_hot(x)
        hs = [one_hot]  # []
        h_ = one_hot
        for f in self.layers:
            h, _ = f(h_)
            # h = self.dropout(h)
            hs.append(h)
            h_ = h
        if type(x) is PackedSequence:
            h = torch.cat([z.data for z in hs], 1)
            h = PackedSequence(h, x.batch_sizes)
        else:
            h = torch.cat([z for z in hs], 2)
        return h

    def forward(self, x):
        """
        :meta private:
        """
        one_hot = self.to_one_hot(x)
        hs = [one_hot]
        h_ = one_hot

        for f in self.layers:
            h, _ = f(h_)
            # h = self.dropout(h)
            hs.append(h)
            h_ = h

        if type(x) is PackedSequence:
            h = torch.cat([z.data for z in hs], 1)
            z = self.proj(h)
            z = PackedSequence(z, x.batch_sizes)
        else:
            h = torch.cat([z for z in hs], 2)
            z = self.proj(h.view(-1, h.size(2)))
            z = z.view(x.size(0), x.size(1), -1)

        return z