wilbin's picture
Upload 248 files
8896a5f verified
<!DOCTYPE html>
<html class="writer-html5" lang="en" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>dscript.models.embedding &mdash; D-SCRIPT v1.0-beta documentation</title>
<link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
<!--[if lt IE 9]>
<script src="../../../_static/js/html5shiv.min.js"></script>
<![endif]-->
<script type="text/javascript" id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
<script src="../../../_static/jquery.js"></script>
<script src="../../../_static/underscore.js"></script>
<script src="../../../_static/doctools.js"></script>
<script type="text/javascript" src="../../../_static/js/theme.js"></script>
<link rel="index" title="Index" href="../../../genindex.html" />
<link rel="search" title="Search" href="../../../search.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="../../../index.html" class="icon icon-home"> D-SCRIPT
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../installation.html">Installation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../usage.html">Usage</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../data.html">Data</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../api/index.html">API</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../../../index.html">D-SCRIPT</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="../../../index.html" class="icon icon-home"></a> &raquo;</li>
<li><a href="../../index.html">Module code</a> &raquo;</li>
<li>dscript.models.embedding</li>
<li class="wy-breadcrumbs-aside">
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<h1>Source code for dscript.models.embedding</h1><div class="highlight"><pre>
<span></span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">Embedding model classes.</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="kn">import</span> <span class="nn">torch</span>
<span class="kn">import</span> <span class="nn">torch.nn</span> <span class="k">as</span> <span class="nn">nn</span>
<span class="kn">import</span> <span class="nn">torch.nn.functional</span> <span class="k">as</span> <span class="nn">F</span>
<span class="kn">from</span> <span class="nn">torch.nn.utils.rnn</span> <span class="kn">import</span> <span class="n">PackedSequence</span>
<div class="viewcode-block" id="IdentityEmbed"><a class="viewcode-back" href="../../../api/dscript.models.html#dscript.models.embedding.IdentityEmbed">[docs]</a><span class="k">class</span> <span class="nc">IdentityEmbed</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Does not reduce the dimension of the language model embeddings, just passes them through to the contact model.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<div class="viewcode-block" id="IdentityEmbed.forward"><a class="viewcode-back" href="../../../api/dscript.models.html#dscript.models.embedding.IdentityEmbed.forward">[docs]</a> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> :param x: Input language model embedding :math:`(b \\times N \\times d_0)`</span>
<span class="sd"> :type x: torch.Tensor</span>
<span class="sd"> :return: Same embedding</span>
<span class="sd"> :rtype: torch.Tensor</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="n">x</span></div></div>
<div class="viewcode-block" id="FullyConnectedEmbed"><a class="viewcode-back" href="../../../api/dscript.models.html#dscript.models.embedding.FullyConnectedEmbed">[docs]</a><span class="k">class</span> <span class="nc">FullyConnectedEmbed</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Protein Projection Module. Takes embedding from language model and outputs low-dimensional interaction aware projection.</span>
<span class="sd"> :param nin: Size of language model output</span>
<span class="sd"> :type nin: int</span>
<span class="sd"> :param nout: Dimension of projection</span>
<span class="sd"> :type nout: int</span>
<span class="sd"> :param dropout: Proportion of weights to drop out [default: 0.5]</span>
<span class="sd"> :type dropout: float</span>
<span class="sd"> :param activation: Activation for linear projection model</span>
<span class="sd"> :type activation: torch.nn.Module</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">nin</span><span class="p">,</span> <span class="n">nout</span><span class="p">,</span> <span class="n">dropout</span><span class="o">=</span><span class="mf">0.5</span><span class="p">,</span> <span class="n">activation</span><span class="o">=</span><span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">()):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">FullyConnectedEmbed</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">nin</span> <span class="o">=</span> <span class="n">nin</span>
<span class="bp">self</span><span class="o">.</span><span class="n">nout</span> <span class="o">=</span> <span class="n">nout</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dropout_p</span> <span class="o">=</span> <span class="n">dropout</span>
<span class="bp">self</span><span class="o">.</span><span class="n">transform</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">nin</span><span class="p">,</span> <span class="n">nout</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">drop</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Dropout</span><span class="p">(</span><span class="n">p</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">dropout_p</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">activation</span> <span class="o">=</span> <span class="n">activation</span>
<div class="viewcode-block" id="FullyConnectedEmbed.forward"><a class="viewcode-back" href="../../../api/dscript.models.html#dscript.models.embedding.FullyConnectedEmbed.forward">[docs]</a> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> :param x: Input language model embedding :math:`(b \\times N \\times d_0)`</span>
<span class="sd"> :type x: torch.Tensor</span>
<span class="sd"> :return: Low dimensional projection of embedding</span>
<span class="sd"> :rtype: torch.Tensor</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">t</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">t</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">activation</span><span class="p">(</span><span class="n">t</span><span class="p">)</span>
<span class="n">t</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">drop</span><span class="p">(</span><span class="n">t</span><span class="p">)</span>
<span class="k">return</span> <span class="n">t</span></div></div>
<div class="viewcode-block" id="SkipLSTM"><a class="viewcode-back" href="../../../api/dscript.models.html#dscript.models.embedding.SkipLSTM">[docs]</a><span class="k">class</span> <span class="nc">SkipLSTM</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Language model from `Bepler &amp; Berger &lt;https://github.com/tbepler/protein-sequence-embedding-iclr2019&gt;`_.</span>
<span class="sd"> Loaded with pre-trained weights in embedding function.</span>
<span class="sd"> :param nin: Input dimension of amino acid one-hot [default: 21]</span>
<span class="sd"> :type nin: int</span>
<span class="sd"> :param nout: Output dimension of final layer [default: 100]</span>
<span class="sd"> :type nout: int</span>
<span class="sd"> :param hidden_dim: Size of hidden dimension [default: 1024]</span>
<span class="sd"> :type hidden_dim: int</span>
<span class="sd"> :param num_layers: Number of stacked LSTM models [default: 3]</span>
<span class="sd"> :type num_layers: int</span>
<span class="sd"> :param dropout: Proportion of weights to drop out [default: 0]</span>
<span class="sd"> :type dropout: float</span>
<span class="sd"> :param bidirectional: Whether to use biLSTM vs. LSTM</span>
<span class="sd"> :type bidirectional: bool</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">nin</span><span class="o">=</span><span class="mi">21</span><span class="p">,</span> <span class="n">nout</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> <span class="n">hidden_dim</span><span class="o">=</span><span class="mi">1024</span><span class="p">,</span> <span class="n">num_layers</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">dropout</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">bidirectional</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">SkipLSTM</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">nin</span> <span class="o">=</span> <span class="n">nin</span>
<span class="bp">self</span><span class="o">.</span><span class="n">nout</span> <span class="o">=</span> <span class="n">nout</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dropout</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Dropout</span><span class="p">(</span><span class="n">p</span><span class="o">=</span><span class="n">dropout</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">layers</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">ModuleList</span><span class="p">()</span>
<span class="n">dim</span> <span class="o">=</span> <span class="n">nin</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">num_layers</span><span class="p">):</span>
<span class="n">f</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">LSTM</span><span class="p">(</span><span class="n">dim</span><span class="p">,</span> <span class="n">hidden_dim</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">batch_first</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">bidirectional</span><span class="o">=</span><span class="n">bidirectional</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">f</span><span class="p">)</span>
<span class="k">if</span> <span class="n">bidirectional</span><span class="p">:</span>
<span class="n">dim</span> <span class="o">=</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">hidden_dim</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">dim</span> <span class="o">=</span> <span class="n">hidden_dim</span>
<span class="n">n</span> <span class="o">=</span> <span class="n">hidden_dim</span> <span class="o">*</span> <span class="n">num_layers</span> <span class="o">+</span> <span class="n">nin</span>
<span class="k">if</span> <span class="n">bidirectional</span><span class="p">:</span>
<span class="n">n</span> <span class="o">=</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">hidden_dim</span> <span class="o">*</span> <span class="n">num_layers</span> <span class="o">+</span> <span class="n">nin</span>
<span class="bp">self</span><span class="o">.</span><span class="n">proj</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">n</span><span class="p">,</span> <span class="n">nout</span><span class="p">)</span>
<div class="viewcode-block" id="SkipLSTM.to_one_hot"><a class="viewcode-back" href="../../../api/dscript.models.html#dscript.models.embedding.SkipLSTM.to_one_hot">[docs]</a> <span class="k">def</span> <span class="nf">to_one_hot</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Transform numeric encoded amino acid vector to one-hot encoded vector</span>
<span class="sd"> :param x: Input numeric amino acid encoding :math:`(N)`</span>
<span class="sd"> :type x: torch.Tensor</span>
<span class="sd"> :return: One-hot encoding vector :math:`(N \\times n_{in})`</span>
<span class="sd"> :rtype: torch.Tensor</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">packed</span> <span class="o">=</span> <span class="nb">type</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="ow">is</span> <span class="n">PackedSequence</span>
<span class="k">if</span> <span class="n">packed</span><span class="p">:</span>
<span class="n">one_hot</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">new</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="bp">self</span><span class="o">.</span><span class="n">nin</span><span class="p">)</span><span class="o">.</span><span class="n">float</span><span class="p">()</span><span class="o">.</span><span class="n">zero_</span><span class="p">()</span>
<span class="n">one_hot</span><span class="o">.</span><span class="n">scatter_</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">x</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="mi">1</span><span class="p">),</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">one_hot</span> <span class="o">=</span> <span class="n">PackedSequence</span><span class="p">(</span><span class="n">one_hot</span><span class="p">,</span> <span class="n">x</span><span class="o">.</span><span class="n">batch_sizes</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">one_hot</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">new</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="n">x</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">1</span><span class="p">),</span> <span class="bp">self</span><span class="o">.</span><span class="n">nin</span><span class="p">)</span><span class="o">.</span><span class="n">float</span><span class="p">()</span><span class="o">.</span><span class="n">zero_</span><span class="p">()</span>
<span class="n">one_hot</span><span class="o">.</span><span class="n">scatter_</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="n">x</span><span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="mi">2</span><span class="p">),</span> <span class="mi">1</span><span class="p">)</span>
<span class="k">return</span> <span class="n">one_hot</span></div>
<div class="viewcode-block" id="SkipLSTM.transform"><a class="viewcode-back" href="../../../api/dscript.models.html#dscript.models.embedding.SkipLSTM.transform">[docs]</a> <span class="k">def</span> <span class="nf">transform</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> :param x: Input numeric amino acid encoding :math:`(N)`</span>
<span class="sd"> :type x: torch.Tensor</span>
<span class="sd"> :return: Concatenation of all hidden layers :math:`(N \\times (n_{in} + 2 \\times \\text{num_layers} \\times \\text{hidden_dim}))`</span>
<span class="sd"> :rtype: torch.Tensor</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">one_hot</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">to_one_hot</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">hs</span> <span class="o">=</span> <span class="p">[</span><span class="n">one_hot</span><span class="p">]</span> <span class="c1"># []</span>
<span class="n">h_</span> <span class="o">=</span> <span class="n">one_hot</span>
<span class="k">for</span> <span class="n">f</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">layers</span><span class="p">:</span>
<span class="n">h</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">f</span><span class="p">(</span><span class="n">h_</span><span class="p">)</span>
<span class="c1"># h = self.dropout(h)</span>
<span class="n">hs</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">h</span><span class="p">)</span>
<span class="n">h_</span> <span class="o">=</span> <span class="n">h</span>
<span class="k">if</span> <span class="nb">type</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="ow">is</span> <span class="n">PackedSequence</span><span class="p">:</span>
<span class="n">h</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">([</span><span class="n">z</span><span class="o">.</span><span class="n">data</span> <span class="k">for</span> <span class="n">z</span> <span class="ow">in</span> <span class="n">hs</span><span class="p">],</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">h</span> <span class="o">=</span> <span class="n">PackedSequence</span><span class="p">(</span><span class="n">h</span><span class="p">,</span> <span class="n">x</span><span class="o">.</span><span class="n">batch_sizes</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">h</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">([</span><span class="n">z</span> <span class="k">for</span> <span class="n">z</span> <span class="ow">in</span> <span class="n">hs</span><span class="p">],</span> <span class="mi">2</span><span class="p">)</span>
<span class="k">return</span> <span class="n">h</span></div>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> :meta private:</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">one_hot</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">to_one_hot</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">hs</span> <span class="o">=</span> <span class="p">[</span><span class="n">one_hot</span><span class="p">]</span>
<span class="n">h_</span> <span class="o">=</span> <span class="n">one_hot</span>
<span class="k">for</span> <span class="n">f</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">layers</span><span class="p">:</span>
<span class="n">h</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">f</span><span class="p">(</span><span class="n">h_</span><span class="p">)</span>
<span class="c1"># h = self.dropout(h)</span>
<span class="n">hs</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">h</span><span class="p">)</span>
<span class="n">h_</span> <span class="o">=</span> <span class="n">h</span>
<span class="k">if</span> <span class="nb">type</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="ow">is</span> <span class="n">PackedSequence</span><span class="p">:</span>
<span class="n">h</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">([</span><span class="n">z</span><span class="o">.</span><span class="n">data</span> <span class="k">for</span> <span class="n">z</span> <span class="ow">in</span> <span class="n">hs</span><span class="p">],</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">z</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">proj</span><span class="p">(</span><span class="n">h</span><span class="p">)</span>
<span class="n">z</span> <span class="o">=</span> <span class="n">PackedSequence</span><span class="p">(</span><span class="n">z</span><span class="p">,</span> <span class="n">x</span><span class="o">.</span><span class="n">batch_sizes</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">h</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">([</span><span class="n">z</span> <span class="k">for</span> <span class="n">z</span> <span class="ow">in</span> <span class="n">hs</span><span class="p">],</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">z</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">proj</span><span class="p">(</span><span class="n">h</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">h</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">2</span><span class="p">)))</span>
<span class="n">z</span> <span class="o">=</span> <span class="n">z</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="n">x</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">1</span><span class="p">),</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<span class="k">return</span> <span class="n">z</span></div>
</pre></div>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<p>
&#169; Copyright 2020, Samuel Sledzieski, Rohit Singh.
</p>
</div>
Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
<a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>