dscript.commands¶
dscript.commands.predict¶
See Prediction for full usage details.
Make new predictions with a pre-trained model. One of –seqs or –embeddings is required.
dscript.commands.embed¶
See Embedding for full usage details.
Generate new embeddings using pre-trained language model.
dscript.commands.train¶
See Training for full usage details.
Train a new model.
-
dscript.commands.train.
interaction_eval
(model, test_iterator, tensors, use_cuda)[source]¶ Evaluate test data set performance.
- Parameters
model (dscript.models.interaction.ModelInteraction) – Model to be trained
test_iterator (torch.utils.data.DataLoader) – Test data iterator
tensors (dict[str, torch.Tensor]) – Dictionary of protein names to embeddings
use_cuda (bool) – Whether to use GPU
- Returns
(Loss, number correct, mean square error, precision, recall, F1 Score, AUPR)
- Return type
(torch.Tensor, int, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor)
-
dscript.commands.train.
interaction_grad
(model, n0, n1, y, tensors, use_cuda, weight=0.35)[source]¶ Compute gradient and backpropagate loss for a batch.
- Parameters
model (dscript.models.interaction.ModelInteraction) – Model to be trained
n0 (list[str]) – First protein names
n1 (list[str]) – Second protein names
y (torch.Tensor) – Interaction labels
tensors (dict[str, torch.Tensor]) – Dictionary of protein names to embeddings
use_cuda (bool) – Whether to use GPU
weight (float) – Weight on the contact map magnitude objective. BCE loss is \(1 - \text{weight}\).
- Returns
(Loss, number correct, mean square error, batch size)
- Return type
(torch.Tensor, int, torch.Tensor, int)
-
dscript.commands.train.
predict_cmap_interaction
(model, n0, n1, tensors, use_cuda)[source]¶ Predict whether a list of protein pairs will interact, as well as their contact map.
- Parameters
model (dscript.models.interaction.ModelInteraction) – Model to be trained
n0 (list[str]) – First protein names
n1 (list[str]) – Second protein names
tensors (dict[str, torch.Tensor]) – Dictionary of protein names to embeddings
use_cuda (bool) – Whether to use GPU
-
dscript.commands.train.
predict_interaction
(model, n0, n1, tensors, use_cuda)[source]¶ Predict whether a list of protein pairs will interact.
- Parameters
model (dscript.models.interaction.ModelInteraction) – Model to be trained
n0 (list[str]) – First protein names
n1 (list[str]) – Second protein names
tensors (dict[str, torch.Tensor]) – Dictionary of protein names to embeddings
use_cuda (bool) – Whether to use GPU
dscript.commands.eval¶
See Evaluation for full usage details.
Evaluate a trained model.
-
dscript.commands.eval.
plot_eval_predictions
(labels, predictions, path='figure')[source]¶ Plot histogram of positive and negative predictions, precision-recall curve, and receiver operating characteristic curve.
- Parameters
y (np.ndarray) – Labels
phat (np.ndarray) – Predicted probabilities
path (str) – File prefix for plots to be saved to [default: figure]