""" Train a new model. """ import sys import argparse import h5py import datetime import subprocess as sp import numpy as np import pandas as pd import gzip as gz from tqdm import tqdm import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.autograd import Variable from torch.utils.data import IterableDataset, DataLoader from sklearn.metrics import average_precision_score as average_precision import dscript from dscript.utils import PairedDataset, collate_paired_sequences from dscript.models.embedding import ( IdentityEmbed, FullyConnectedEmbed, ) from dscript.models.contact import ContactCNN from dscript.models.interaction import ModelInteraction def add_args(parser): """ Create parser for command line utility. :meta private: """ data_grp = parser.add_argument_group("Data") proj_grp = parser.add_argument_group("Projection Module") contact_grp = parser.add_argument_group("Contact Module") inter_grp = parser.add_argument_group("Interaction Module") train_grp = parser.add_argument_group("Training") misc_grp = parser.add_argument_group("Output and Device") # Data data_grp.add_argument("--train", help="Training data", required=True) data_grp.add_argument("--val", help="Validation data", required=True) data_grp.add_argument("--embedding", help="h5 file with embedded sequences", required=True) data_grp.add_argument( "--augment", action="store_true", help="Set flag to augment data by adding (B A) for all pairs (A B)", ) # Embedding model proj_grp.add_argument( "--projection-dim", type=int, default=100, help="Dimension of embedding projection layer (default: 100)", ) proj_grp.add_argument( "--dropout-p", type=float, default=0.5, help="Parameter p for embedding dropout layer (default: 0.5)", ) # Contact model contact_grp.add_argument( "--hidden-dim", type=int, default=50, help="Number of hidden units for comparison layer in contact prediction (default: 50)", ) contact_grp.add_argument( "--kernel-width", type=int, default=7, help="Width of convolutional filter for contact prediction (default: 7)", ) # Interaction Model inter_grp.add_argument( "--use-w", action="store_true", help="Use weight matrix in interaction prediction model", ) inter_grp.add_argument( "--pool-width", type=int, default=9, help="Size of max-pool in interaction model (default: 9)", ) # Training train_grp.add_argument( "--negative-ratio", type=int, default=10, help="Number of negative training samples for each positive training sample (default: 10)", ) train_grp.add_argument( "--epoch-scale", type=int, default=1, help="Report heldout performance every this many epochs (default: 1)", ) train_grp.add_argument("--num-epochs", type=int, default=10, help="Number of epochs (default: 10)") train_grp.add_argument("--batch-size", type=int, default=25, help="Minibatch size (default: 25)") train_grp.add_argument("--weight-decay", type=float, default=0, help="L2 regularization (default: 0)") train_grp.add_argument("--lr", type=float, default=0.001, help="Learning rate (default: 0.001)") train_grp.add_argument( "--lambda", dest="lambda_", type=float, default=0.35, help="Weight on the similarity objective (default: 0.35)", ) # Output misc_grp.add_argument("-o", "--outfile", help="Output file path (default: stdout)") misc_grp.add_argument("--save-prefix", help="Path prefix for saving models") misc_grp.add_argument("-d", "--device", type=int, default=-1, help="Compute device to use") misc_grp.add_argument("--checkpoint", help="Checkpoint model to start training from") return parser def predict_interaction(model, n0, n1, tensors, use_cuda): """ Predict whether a list of protein pairs will interact. :param model: Model to be trained :type model: dscript.models.interaction.ModelInteraction :param n0: First protein names :type n0: list[str] :param n1: Second protein names :type n1: list[str] :param tensors: Dictionary of protein names to embeddings :type tensors: dict[str, torch.Tensor] :param use_cuda: Whether to use GPU :type use_cuda: bool """ b = len(n0) p_hat = [] for i in range(b): z_a = tensors[n0[i]] z_b = tensors[n1[i]] if use_cuda: z_a = z_a.cuda() z_b = z_b.cuda() p_hat.append(model.predict(z_a, z_b)) p_hat = torch.stack(p_hat, 0) return p_hat def predict_cmap_interaction(model, n0, n1, tensors, use_cuda): """ Predict whether a list of protein pairs will interact, as well as their contact map. :param model: Model to be trained :type model: dscript.models.interaction.ModelInteraction :param n0: First protein names :type n0: list[str] :param n1: Second protein names :type n1: list[str] :param tensors: Dictionary of protein names to embeddings :type tensors: dict[str, torch.Tensor] :param use_cuda: Whether to use GPU :type use_cuda: bool """ b = len(n0) p_hat = [] c_map_mag = [] for i in range(b): z_a = tensors[n0[i]] z_b = tensors[n1[i]] if use_cuda: z_a = z_a.cuda() z_b = z_b.cuda() cm, ph = model.map_predict(z_a, z_b) p_hat.append(ph) c_map_mag.append(torch.mean(cm)) p_hat = torch.stack(p_hat, 0) c_map_mag = torch.stack(c_map_mag, 0) return c_map_mag, p_hat def interaction_grad(model, n0, n1, y, tensors, use_cuda, weight=0.35): """ Compute gradient and backpropagate loss for a batch. :param model: Model to be trained :type model: dscript.models.interaction.ModelInteraction :param n0: First protein names :type n0: list[str] :param n1: Second protein names :type n1: list[str] :param y: Interaction labels :type y: torch.Tensor :param tensors: Dictionary of protein names to embeddings :type tensors: dict[str, torch.Tensor] :param use_cuda: Whether to use GPU :type use_cuda: bool :param weight: Weight on the contact map magnitude objective. BCE loss is :math:`1 - \\text{weight}`. :type weight: float :return: (Loss, number correct, mean square error, batch size) :rtype: (torch.Tensor, int, torch.Tensor, int) """ c_map_mag, p_hat = predict_cmap_interaction(model, n0, n1, tensors, use_cuda) if use_cuda: y = y.cuda() y = Variable(y) bce_loss = F.binary_cross_entropy(p_hat.float(), y.float()) cmap_loss = torch.mean(c_map_mag) loss = (weight * bce_loss) + ((1 - weight) * cmap_loss) b = len(p_hat) # backprop loss loss.backward() if use_cuda: y = y.cpu() p_hat = p_hat.cpu() with torch.no_grad(): guess_cutoff = 0.5 p_hat = p_hat.float() p_guess = (guess_cutoff * torch.ones(b) < p_hat).float() y = y.float() correct = torch.sum(p_guess == y).item() mse = torch.mean((y.float() - p_hat) ** 2).item() return loss, correct, mse, b def interaction_eval(model, test_iterator, tensors, use_cuda): """ Evaluate test data set performance. :param model: Model to be trained :type model: dscript.models.interaction.ModelInteraction :param test_iterator: Test data iterator :type test_iterator: torch.utils.data.DataLoader :param tensors: Dictionary of protein names to embeddings :type tensors: dict[str, torch.Tensor] :param use_cuda: Whether to use GPU :type use_cuda: bool :return: (Loss, number correct, mean square error, precision, recall, F1 Score, AUPR) :rtype: (torch.Tensor, int, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor) """ p_hat = [] true_y = [] for n0, n1, y in test_iterator: p_hat.append(predict_interaction(model, n0, n1, tensors, use_cuda)) true_y.append(y) y = torch.cat(true_y, 0) p_hat = torch.cat(p_hat, 0) if use_cuda: y.cuda() p_hat = torch.Tensor([x.cuda() for x in p_hat]) p_hat.cuda() loss = F.binary_cross_entropy(p_hat.float(), y.float()).item() b = len(y) with torch.no_grad(): guess_cutoff = torch.Tensor([0.5]).float() p_hat = p_hat.float() y = y.float() p_guess = (guess_cutoff * torch.ones(b) < p_hat).float() correct = torch.sum(p_guess == y).item() mse = torch.mean((y.float() - p_hat) ** 2).item() tp = torch.sum(y * p_hat).item() pr = tp / torch.sum(p_hat).item() re = tp / torch.sum(y).item() f1 = 2 * pr * re / (pr + re) y = y.cpu().numpy() p_hat = p_hat.data.cpu().numpy() aupr = average_precision(y, p_hat) return loss, correct, mse, pr, re, f1, aupr def main(args): """ Run training from arguments. :meta private: """ output = args.outfile if output is None: output = sys.stdout else: output = open(output, "w") print(f'# Called as: {" ".join(sys.argv)}', file=output) if output is not sys.stdout: print(f'Called as: {" ".join(sys.argv)}') # Set device device = args.device use_cuda = (device >= 0) and torch.cuda.is_available() if use_cuda: torch.cuda.set_device(device) print( f"# Using CUDA device {device} - {torch.cuda.get_device_name(device)}", file=output, ) else: print("# Using CPU", file=output) device = "cpu" batch_size = args.batch_size train_fi = args.train test_fi = args.val augment = args.augment embedding_h5 = args.embedding h5fi = h5py.File(embedding_h5, "r") print(f"# Loading training pairs from {train_fi}...", file=output) output.flush() train_df = pd.read_csv(train_fi, sep="\t", header=None) if augment: train_n0 = pd.concat((train_df[0], train_df[1]), axis=0) train_n1 = pd.concat((train_df[1], train_df[0]), axis=0) train_y = torch.from_numpy(pd.concat((train_df[2], train_df[2])).values) else: train_n0, train_n1 = train_df[0], train_df[1] train_y = torch.from_numpy(train_df[2].values) print(f"# Loading testing pairs from {test_fi}...", file=output) output.flush() test_df = pd.read_csv(test_fi, sep="\t", header=None) test_n0, test_n1 = test_df[0], test_df[1] test_y = torch.from_numpy(test_df[2].values) output.flush() train_pairs = PairedDataset(train_n0, train_n1, train_y) pairs_train_iterator = torch.utils.data.DataLoader( train_pairs, batch_size=batch_size, collate_fn=collate_paired_sequences, shuffle=True, ) test_pairs = PairedDataset(test_n0, test_n1, test_y) pairs_test_iterator = torch.utils.data.DataLoader( test_pairs, batch_size=batch_size, collate_fn=collate_paired_sequences, shuffle=True, ) output.flush() print(f"# Loading embeddings", file=output) tensors = {} all_proteins = set(train_n0).union(set(train_n1)).union(set(test_n0)).union(set(test_n1)) for prot_name in tqdm(all_proteins): tensors[prot_name] = torch.from_numpy(h5fi[prot_name][:, :]) use_cuda = (args.device > -1) and torch.cuda.is_available() if args.checkpoint is None: projection_dim = args.projection_dim dropout_p = args.dropout_p embedding = FullyConnectedEmbed(6165, projection_dim, dropout=dropout_p) print("# Initializing embedding model with:", file=output) print(f"\tprojection_dim: {projection_dim}", file=output) print(f"\tdropout_p: {dropout_p}", file=output) # Create contact model hidden_dim = args.hidden_dim kernel_width = args.kernel_width print("# Initializing contact model with:", file=output) print(f"\thidden_dim: {hidden_dim}", file=output) print(f"\tkernel_width: {kernel_width}", file=output) contact = ContactCNN(projection_dim, hidden_dim, kernel_width) # Create the full model use_W = args.use_w pool_width = args.pool_width print("# Initializing interaction model with:", file=output) print(f"\tpool_width: {pool_width}", file=output) print(f"\tuse_w: {use_W}", file=output) model = ModelInteraction(embedding, contact, use_W=use_W, pool_size=pool_width) print(model, file=output) else: print("# Loading model from checkpoint {}".format(args.checkpoint), file=output) model = torch.load(args.checkpoint) model.use_cuda = use_cuda if use_cuda: model = model.cuda() # Train the model lr = args.lr wd = args.weight_decay num_epochs = args.num_epochs batch_size = args.batch_size report_steps = args.epoch_scale inter_weight = args.lambda_ cmap_weight = 1 - inter_weight digits = int(np.floor(np.log10(num_epochs))) + 1 save_prefix = args.save_prefix if save_prefix is None: save_prefix = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M") params = [p for p in model.parameters() if p.requires_grad] optim = torch.optim.Adam(params, lr=lr, weight_decay=wd) print(f'# Using save prefix "{save_prefix}"', file=output) print(f"# Training with Adam: lr={lr}, weight_decay={wd}", file=output) print(f"\tnum_epochs: {num_epochs}", file=output) print(f"\tepoch_scale: {report_steps}", file=output) print(f"\tbatch_size: {batch_size}", file=output) print(f"\tinteraction weight: {inter_weight}", file=output) print(f"\tcontact map weight: {cmap_weight}", file=output) output.flush() batch_report_fmt = "# [{}/{}] training {:.1%}: Loss={:.6}, Accuracy={:.3%}, MSE={:.6}" epoch_report_fmt = "# Finished Epoch {}/{}: Loss={:.6}, Accuracy={:.3%}, MSE={:.6}, Precision={:.6}, Recall={:.6}, F1={:.6}, AUPR={:.6}" N = len(pairs_train_iterator) * batch_size for epoch in range(num_epochs): model.train() n = 0 loss_accum = 0 acc_accum = 0 mse_accum = 0 # Train batches for (z0, z1, y) in tqdm(pairs_train_iterator, desc=f"Epoch {epoch+1}/{num_epochs}",total=len(pairs_train_iterator)): loss, correct, mse, b = interaction_grad(model, z0, z1, y, tensors, use_cuda, weight=inter_weight) n += b delta = b * (loss - loss_accum) loss_accum += delta / n delta = correct - b * acc_accum acc_accum += delta / n delta = b * (mse - mse_accum) mse_accum += delta / n report = (n - b) // 100 < n // 100 optim.step() optim.zero_grad() model.clip() if report: tokens = [ epoch + 1, num_epochs, n / N, loss_accum, acc_accum, mse_accum, ] if output is not sys.stdout: print(batch_report_fmt.format(*tokens), file=output) output.flush() if (epoch + 1) % report_steps == 0: model.eval() with torch.no_grad(): ( inter_loss, inter_correct, inter_mse, inter_pr, inter_re, inter_f1, inter_aupr, ) = interaction_eval(model, pairs_test_iterator, tensors, use_cuda) tokens = [ epoch + 1, num_epochs, inter_loss, inter_correct / (len(pairs_test_iterator) * batch_size), inter_mse, inter_pr, inter_re, inter_f1, inter_aupr, ] print(epoch_report_fmt.format(*tokens), file=output) output.flush() # Save the model if save_prefix is not None: save_path = save_prefix + "_epoch" + str(epoch + 1).zfill(digits) + ".sav" print(f"# Saving model to {save_path}", file=output) model.cpu() torch.save(model, save_path) if use_cuda: model.cuda() output.flush() if save_prefix is not None: save_path = save_prefix + "_final.sav" print(f"# Saving final model to {save_path}", file=output) model.cpu() torch.save(model, save_path) if use_cuda: model.cuda() output.close() if __name__ == "__main__": parser = argparse.ArgumentParser(description=__doc__) add_args(parser) main(parser.parse_args())