""" Evaluate a trained model. """ import sys, os import argparse import numpy as np import pandas as pd import torch import h5py import datetime import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt from sklearn.metrics import ( precision_recall_curve, average_precision_score, roc_curve, roc_auc_score, ) from tqdm import tqdm def add_args(parser): """ Create parser for command line utility. :meta private: """ parser.add_argument("--model", help="Trained prediction model", required=True) parser.add_argument("--test", help="Test Data", required=True) parser.add_argument("--embedding", help="h5 file with embedded sequences", required=True) parser.add_argument("-o", "--outfile", help="Output file to write results") parser.add_argument("-d", "--device", type=int, default=-1, help="Compute device to use") return parser def plot_eval_predictions(labels, predictions, path="figure"): """ Plot histogram of positive and negative predictions, precision-recall curve, and receiver operating characteristic curve. :param y: Labels :type y: np.ndarray :param phat: Predicted probabilities :type phat: np.ndarray :param path: File prefix for plots to be saved to [default: figure] :type path: str """ pos_phat = predictions[labels == 1] neg_phat = predictions[labels == 0] fig, (ax1, ax2) = plt.subplots(1, 2) fig.suptitle("Distribution of Predictions") ax1.hist(pos_phat) ax1.set_xlim(0, 1) ax1.set_title("Positive") ax1.set_xlabel("p-hat") ax2.hist(neg_phat) ax2.set_xlim(0, 1) ax2.set_title("Negative") ax2.set_xlabel("p-hat") plt.savefig(path + ".phat_dist.png") plt.close() precision, recall, pr_thresh = precision_recall_curve(labels, predictions) aupr = average_precision_score(labels, predictions) print("AUPR:", aupr) plt.step(recall, precision, color="b", alpha=0.2, where="post") plt.fill_between(recall, precision, step="post", alpha=0.2, color="b") plt.xlabel("Recall") plt.ylabel("Precision") plt.ylim([0.0, 1.05]) plt.xlim([0.0, 1.0]) plt.title("Precision-Recall (AUPR: {:.3})".format(aupr)) plt.savefig(path + ".aupr.png") plt.close() fpr, tpr, roc_thresh = roc_curve(labels, predictions) auroc = roc_auc_score(labels, predictions) print("AUROC:", auroc) plt.step(fpr, tpr, color="b", alpha=0.2, where="post") plt.fill_between(fpr, tpr, step="post", alpha=0.2, color="b") plt.xlabel("FPR") plt.ylabel("TPR") plt.ylim([0.0, 1.05]) plt.xlim([0.0, 1.0]) plt.title("Receiver Operating Characteristic (AUROC: {:.3})".format(auroc)) plt.savefig(path + ".auroc.png") plt.close() def main(args): """ Run model evaluation from arguments. :meta private: """ # Set Device device = args.device use_cuda = (device >= 0) and torch.cuda.is_available() if use_cuda: torch.cuda.set_device(device) print(f"# Using CUDA device {device} - {torch.cuda.get_device_name(device)}") else: print("# Using CPU") # Load Model model_path = args.model if use_cuda: model = torch.load(model_path).cuda() else: model = torch.load(model_path).cpu() model.use_cuda = False embeddingPath = args.embedding h5fi = h5py.File(embeddingPath, "r") # Load Pairs test_fi = args.test test_df = pd.read_csv(test_fi, sep="\t", header=None) if args.outfile is None: outPath = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M") else: outPath = args.outfile outFile = open(outPath + ".predictions.tsv", "w+") allProteins = set(test_df[0]).union(test_df[1]) seqEmbDict = {} for i in tqdm(allProteins, desc="Loading embeddings"): seqEmbDict[i] = torch.from_numpy(h5fi[i][:]).float() model.eval() with torch.no_grad(): phats = [] labels = [] for _, (n0, n1, label) in tqdm(test_df.iterrows(), total=len(test_df), desc="Predicting pairs"): try: p0 = seqEmbDict[n0] p1 = seqEmbDict[n1] if use_cuda: p0 = p0.cuda() p1 = p1.cuda() pred = model.predict(p0, p1).item() phats.append(pred) labels.append(label) print("{}\t{}\t{}\t{:.5}".format(n0, n1, label, pred), file=outFile) except Exception as e: sys.stderr.write("{} x {} - {}".format(n0, n1, e)) phats = np.array(phats) labels = np.array(labels) plot_eval_predictions(labels, phats, outPath) outFile.close() h5fi.close() if __name__ == "__main__": parser = argparse.ArgumentParser(description=__doc__) add_args(parser) main(parser.parse_args())