Update app.py
Browse files
app.py
CHANGED
@@ -1,82 +1,106 @@
|
|
1 |
-
import
|
2 |
import torch
|
3 |
-
|
4 |
-
from PIL import Image
|
5 |
import os
|
|
|
6 |
|
7 |
-
|
8 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
-
model_path = "model/cloth_segm.pth"
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
def
|
18 |
-
"""
|
19 |
-
if input_img is None:
|
20 |
-
raise gr.Error("Please upload or capture an image first")
|
21 |
-
|
22 |
try:
|
23 |
-
|
24 |
-
if not
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
except Exception as e:
|
31 |
raise gr.Error(f"Error processing image: {str(e)}")
|
32 |
|
33 |
-
#
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
with gr.Row():
|
41 |
with gr.Column():
|
42 |
-
|
43 |
-
|
44 |
-
type="pil",
|
45 |
-
label="Input Image",
|
46 |
-
interactive=True
|
47 |
-
)
|
48 |
-
submit_btn = gr.Button("Process", variant="primary")
|
49 |
-
|
50 |
with gr.Column():
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
)
|
55 |
-
|
56 |
-
# Examples section (optional)
|
57 |
-
example_dir = "input"
|
58 |
-
if os.path.exists(example_dir):
|
59 |
-
example_images = [
|
60 |
-
os.path.join(example_dir, f)
|
61 |
-
for f in os.listdir(example_dir)
|
62 |
-
if f.lower().endswith(('.png', '.jpg', '.jpeg'))
|
63 |
-
]
|
64 |
-
|
65 |
gr.Examples(
|
66 |
-
examples=
|
67 |
-
inputs=[
|
68 |
-
|
69 |
-
|
70 |
-
cache_examples=True,
|
71 |
-
label="Example Images"
|
72 |
)
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
)
|
79 |
|
80 |
-
#
|
81 |
-
|
82 |
-
demo.launch()
|
|
|
1 |
+
import PIL
|
2 |
import torch
|
3 |
+
import gradio as gr
|
|
|
4 |
import os
|
5 |
+
from process import load_seg_model, get_palette, generate_mask
|
6 |
|
7 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
|
8 |
|
9 |
+
def read_content(file_path: str) -> str:
|
10 |
+
"""Read file content with error handling"""
|
11 |
+
try:
|
12 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
13 |
+
return f.read()
|
14 |
+
except FileNotFoundError:
|
15 |
+
print(f"Warning: File {file_path} not found")
|
16 |
+
return ""
|
17 |
+
except Exception as e:
|
18 |
+
print(f"Error reading file {file_path}: {str(e)}")
|
19 |
+
return ""
|
20 |
|
21 |
+
def initialize_and_load_models():
|
22 |
+
"""Initialize and load models with error handling"""
|
|
|
|
|
|
|
23 |
try:
|
24 |
+
checkpoint_path = 'model/cloth_segm.pth'
|
25 |
+
if not os.path.exists(checkpoint_path):
|
26 |
+
raise FileNotFoundError(f"Model checkpoint not found at {checkpoint_path}")
|
27 |
+
return load_seg_model(checkpoint_path, device=device)
|
28 |
+
except Exception as e:
|
29 |
+
print(f"Error loading model: {str(e)}")
|
30 |
+
return None
|
31 |
+
|
32 |
+
net = initialize_and_load_models()
|
33 |
+
if net is None:
|
34 |
+
raise RuntimeError("Failed to load model - check logs for details")
|
35 |
+
|
36 |
+
palette = get_palette(4)
|
37 |
+
|
38 |
+
def run(img):
|
39 |
+
"""Process image with error handling"""
|
40 |
+
if img is None:
|
41 |
+
raise gr.Error("No image uploaded")
|
42 |
+
try:
|
43 |
+
cloth_seg = generate_mask(img, net=net, palette=palette, device=device)
|
44 |
+
if cloth_seg is None:
|
45 |
+
raise gr.Error("Failed to generate mask")
|
46 |
+
return cloth_seg
|
47 |
except Exception as e:
|
48 |
raise gr.Error(f"Error processing image: {str(e)}")
|
49 |
|
50 |
+
# CSS styling
|
51 |
+
css = '''
|
52 |
+
.container {max-width: 1150px;margin: auto;padding-top: 1.5rem}
|
53 |
+
#image_upload{min-height:400px}
|
54 |
+
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px}
|
55 |
+
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
|
56 |
+
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
|
57 |
+
.dark .footer {border-color: #303030}
|
58 |
+
.dark .footer>p {background: #0b0f19}
|
59 |
+
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
|
60 |
+
#image_upload .touch-none{display: flex}
|
61 |
+
'''
|
62 |
+
|
63 |
+
# Collect example images
|
64 |
+
image_dir = 'input'
|
65 |
+
image_list = []
|
66 |
+
if os.path.exists(image_dir):
|
67 |
+
image_list = [os.path.join(image_dir, file) for file in os.listdir(image_dir) if file.lower().endswith(('.png', '.jpg', '.jpeg'))]
|
68 |
+
image_list.sort()
|
69 |
+
examples = [[img] for img in image_list]
|
70 |
+
|
71 |
+
with gr.Blocks(css=css) as demo:
|
72 |
+
gr.HTML(read_content("header.html"))
|
73 |
+
|
74 |
with gr.Row():
|
75 |
with gr.Column():
|
76 |
+
image = gr.Image(elem_id="image_upload", type="pil", label="Input Image")
|
77 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
with gr.Column():
|
79 |
+
image_out = gr.Image(label="Output", elem_id="output-img")
|
80 |
+
|
81 |
+
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
gr.Examples(
|
83 |
+
examples=examples,
|
84 |
+
inputs=[image],
|
85 |
+
label="Examples - Input Images",
|
86 |
+
examples_per_page=12
|
|
|
|
|
87 |
)
|
88 |
+
btn = gr.Button("Run!", variant="primary")
|
89 |
+
|
90 |
+
btn.click(fn=run, inputs=[image], outputs=[image_out])
|
91 |
+
|
92 |
+
gr.HTML(
|
93 |
+
"""
|
94 |
+
<div class="footer">
|
95 |
+
<p>Model by <a href="" style="text-decoration: underline;" target="_blank">WildOctopus</a> - Gradio Demo by 🤗 Hugging Face</p>
|
96 |
+
</div>
|
97 |
+
<div class="acknowledgments">
|
98 |
+
<p><h4>ACKNOWLEDGEMENTS</h4></p>
|
99 |
+
<p>U2net model is from original u2net repo. Thanks to <a href="https://github.com/xuebinqin/U-2-Net" target="_blank">Xuebin Qin</a>.</p>
|
100 |
+
<p>Codes modified from <a href="https://github.com/levindabhi/cloth-segmentation" target="_blank">levindabhi/cloth-segmentation</a></p>
|
101 |
+
</div>
|
102 |
+
"""
|
103 |
)
|
104 |
|
105 |
+
# For Hugging Face Spaces, use launch() without share=True
|
106 |
+
demo.launch()
|
|