import PIL import torch import gradio as gr import os from process import load_seg_model, get_palette, generate_mask device = 'cuda' if torch.cuda.is_available() else 'cpu' def read_content(file_path: str) -> str: """Read file content with error handling""" try: with open(file_path, 'r', encoding='utf-8') as f: return f.read() except FileNotFoundError: print(f"Warning: File {file_path} not found") return "" except Exception as e: print(f"Error reading file {file_path}: {str(e)}") return "" def initialize_and_load_models(): """Initialize and load models with error handling""" try: checkpoint_path = 'model/cloth_segm.pth' if not os.path.exists(checkpoint_path): raise FileNotFoundError(f"Model checkpoint not found at {checkpoint_path}") return load_seg_model(checkpoint_path, device=device) except Exception as e: print(f"Error loading model: {str(e)}") return None net = initialize_and_load_models() if net is None: raise RuntimeError("Failed to load model - check logs for details") palette = get_palette(4) def run(img): """Process image with error handling""" if img is None: raise gr.Error("No image uploaded") try: cloth_seg = generate_mask(img, net=net, palette=palette, device=device) if cloth_seg is None: raise gr.Error("Failed to generate mask") return cloth_seg except Exception as e: raise gr.Error(f"Error processing image: {str(e)}") # CSS styling css = ''' .container {max-width: 1150px;margin: auto;padding-top: 1.5rem} #image_upload{min-height:400px} #image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px} .footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5} .footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white} .dark .footer {border-color: #303030} .dark .footer>p {background: #0b0f19} .acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%} #image_upload .touch-none{display: flex} ''' # Collect example images image_dir = 'input' image_list = [] if os.path.exists(image_dir): image_list = [os.path.join(image_dir, file) for file in os.listdir(image_dir) if file.lower().endswith(('.png', '.jpg', '.jpeg'))] image_list.sort() examples = [[img] for img in image_list] with gr.Blocks(css=css) as demo: gr.HTML(read_content("header.html")) with gr.Row(): with gr.Column(): image = gr.Image(elem_id="image_upload", type="pil", label="Input Image") with gr.Column(): image_out = gr.Image(label="Output", elem_id="output-img") with gr.Row(): gr.Examples( examples=examples, inputs=[image], label="Examples - Input Images", examples_per_page=12 ) btn = gr.Button("Run!", variant="primary") btn.click(fn=run, inputs=[image], outputs=[image_out]) gr.HTML( """
U2net model is from original u2net repo. Thanks to Xuebin Qin.
Codes modified from levindabhi/cloth-segmentation