Spaces:
Sleeping
Sleeping
import gradio as gr | |
import chromadb | |
from transformers import AutoTokenizer, AutoModel | |
import numpy as np | |
import torch | |
# Load the pre-trained model and tokenizer | |
model_name = "sentence-transformers/all-MiniLM-L6-v2" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModel.from_pretrained(model_name) | |
# Initialize Chroma client | |
client = chromadb.Client() | |
# Create a Chroma collection | |
collection = client.create_collection(name="tree_images") | |
# Custom dataset of tree descriptions (both decorated and undecorated) | |
content = [ | |
# Your tree descriptions here... | |
] | |
# Function to generate embeddings using the pre-trained model | |
def generate_embeddings(texts): | |
embeddings = [] | |
for text in texts: | |
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) | |
with torch.no_grad(): | |
output = model(**inputs) | |
embeddings.append(output.last_hidden_state.mean(dim=1).squeeze().numpy()) | |
return embeddings | |
# Generate embeddings for the content | |
embeddings = generate_embeddings(content) | |
# Add the embeddings to Chroma using upsert | |
for idx, text in enumerate(content): | |
collection.upsert( | |
documents=[text], # the document (text) itself | |
metadatas=[{"id": idx}], # metadata associated with the document | |
embeddings=[embeddings[idx]] # the corresponding embeddings for the document | |
) | |
# Define the search function for Gradio interface | |
def search(query): | |
# Generate embedding for the query | |
query_embedding = generate_embeddings([query])[0].reshape(1, -1) | |
# Chroma-based search | |
chroma_results = collection.query(query_embeddings=query_embedding, n_results=3)["documents"] | |
# Return results | |
return "Chroma Results: " + ", ".join(chroma_results) | |
# Create the Gradio interface | |
interface = gr.Interface(fn=search, inputs="text", outputs="text") | |
# Launch the Gradio interface | |
interface.launch() |