Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import chromadb
|
3 |
+
import numpy as np
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
from transformers import pipeline
|
6 |
+
import pickle
|
7 |
+
|
8 |
+
# Load pre-trained model and embeddings
|
9 |
+
model = SentenceTransformer("all-MiniLM-L6-v2") # You can upload this model from HF Hub if available
|
10 |
+
generator = pipeline("text-generation", model="gpt2")
|
11 |
+
|
12 |
+
# Initialize ChromaDB client (using the Chroma database uploaded as a file)
|
13 |
+
client = chromadb.Client()
|
14 |
+
collection = client.create_collection("documents")
|
15 |
+
|
16 |
+
# Manually load your embeddings and document data from the HF Space files
|
17 |
+
with open("embeddings.pkl", "rb") as f:
|
18 |
+
embeddings = pickle.load(f)
|
19 |
+
|
20 |
+
# Example of adding embeddings to FAISS (if using FAISS as the indexer)
|
21 |
+
faiss_index = faiss.IndexFlatL2(512) # Adjust dimension if needed
|
22 |
+
faiss_index.add(np.array(embeddings))
|
23 |
+
|
24 |
+
# Example documents loaded manually or fetched via API
|
25 |
+
documents = ["What is RAG?", "How does FAISS work?", "Introduction to Chroma."]
|
26 |
+
|
27 |
+
def generate_answer(query):
|
28 |
+
query_embedding = model.encode([query])
|
29 |
+
D, I = faiss_index.search(np.array(query_embedding), k=1) # Retrieve the closest document
|
30 |
+
retrieved_doc = documents[I[0][0]]
|
31 |
+
|
32 |
+
prompt = f"Context: {retrieved_doc}\nQuestion: {query}\nAnswer:"
|
33 |
+
response = generator(prompt, max_length=50)
|
34 |
+
return response[0]['generated_text']
|
35 |
+
|
36 |
+
# Gradio interface for manual file uploads and query input
|
37 |
+
iface = gr.Interface(fn=generate_answer, inputs="text", outputs="text")
|
38 |
+
iface.launch()
|