import gradio as gr import chromadb import numpy as np from sentence_transformers import SentenceTransformer from transformers import pipeline import pickle # Load pre-trained model and embeddings model = SentenceTransformer("all-MiniLM-L6-v2") # You can upload this model from HF Hub if available generator = pipeline("text-generation", model="gpt2") # Initialize ChromaDB client (using the Chroma database uploaded as a file) client = chromadb.Client() collection = client.create_collection("documents") # Manually load your embeddings and document data from the HF Space files with open("embeddings.pkl", "rb") as f: embeddings = pickle.load(f) # Example of adding embeddings to FAISS (if using FAISS as the indexer) faiss_index = faiss.IndexFlatL2(512) # Adjust dimension if needed faiss_index.add(np.array(embeddings)) # Example documents loaded manually or fetched via API documents = ["What is RAG?", "How does FAISS work?", "Introduction to Chroma."] def generate_answer(query): query_embedding = model.encode([query]) D, I = faiss_index.search(np.array(query_embedding), k=1) # Retrieve the closest document retrieved_doc = documents[I[0][0]] prompt = f"Context: {retrieved_doc}\nQuestion: {query}\nAnswer:" response = generator(prompt, max_length=50) return response[0]['generated_text'] # Gradio interface for manual file uploads and query input iface = gr.Interface(fn=generate_answer, inputs="text", outputs="text") iface.launch()