import faiss import pickle from transformers import pipeline # Load FAISS index with open('faiss_index.index', 'rb') as f: faiss_index = pickle.load(f) # Load a pre-trained generative model (e.g., GPT-3 or T5) generator = pipeline("text-generation", model="gpt2") # Example query query = "What is the capital of France?" # Search for the most similar document using FAISS query_embedding = model.encode([query]) D, I = faiss_index.search(query_embedding, k=1) # k=1 for the most similar document # Use the retrieved document as context for the generative model retrieved_doc = documents[I[0][0]] # Generate a response using the retrieved document as context prompt = f"Context: {retrieved_doc}\nQuestion: {query}\nAnswer:" answer = generator(prompt, max_length=50) print(answer[0]['generated_text'])