Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
import torch | |
# Load pre-trained model and tokenizer | |
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=3) | |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") | |
# Define a function to make predictions using the model | |
def predict(text): | |
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
predicted_class = torch.argmax(logits, dim=-1).item() | |
return predicted_class | |
# Create Gradio interface | |
iface = gr.Interface(fn=predict, inputs="text", outputs="text", live=True) | |
# Launch the Gradio app | |
iface.launch() |