import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification # Load the model and tokenizer tokenizer = AutoTokenizer.from_pretrained("willco-afk/my-model-name") model = AutoModelForSequenceClassification.from_pretrained("willco-afk/my-model-name") # Function to classify input text def classify_text(text): print("Classifying:", text) # Check if this gets printed inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): logits = model(**inputs).logits predicted_class = logits.argmax().item() # Get the predicted class return f"Predicted class: {predicted_class}" # Gradio Interface without forced layout demo = gr.Interface(fn=classify_text, inputs="text", outputs="text") demo.launch()