Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,22 +2,23 @@
|
|
2 |
from ibm_watson_machine_learning.foundation_models import Model
|
3 |
import gradio as gr
|
4 |
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
7 |
|
8 |
# Model and project settings
|
9 |
model_id = "meta-llama/llama-2-13b-chat" # Directly specifying the LLAMA2 model
|
10 |
|
11 |
-
|
12 |
# Generation parameters
|
13 |
gen_parms = {
|
14 |
"max_new_tokens": 512, # Adjust as needed for the length of the cover letter
|
15 |
"temperature": 0.7 # Adjust for creativity
|
16 |
}
|
17 |
|
18 |
-
|
19 |
# Initialize the model
|
20 |
-
model = Model(model_id,
|
21 |
|
22 |
# Function to generate customized career advice
|
23 |
def generate_career_advice(field, position_name, current_qualifications, likes, skills):
|
@@ -34,11 +35,10 @@ def generate_career_advice(field, position_name, current_qualifications, likes,
|
|
34 |
career_advice = generated_response["results"][0]["generated_text"]
|
35 |
return career_advice
|
36 |
|
37 |
-
|
38 |
# Create Gradio interface for the cover letter generation application
|
39 |
career_advice_app = gr.Interface(
|
40 |
fn=generate_career_advice,
|
41 |
-
allow_flagging="never",
|
42 |
inputs=[
|
43 |
gr.Textbox(label="Field of Interest (e.g., healthcare, trades, social service, etc., or enter 'not sure')", placeholder="Enter the field which you are interested in... or type 'not sure'."),
|
44 |
gr.Textbox(label="Position Name (e.g., nurse, personal support worker, software developer, plumber, etc., or enter 'not sure')", placeholder="Enter the name of the position you are interested in... or type 'not sure'"),
|
@@ -48,7 +48,7 @@ career_advice_app = gr.Interface(
|
|
48 |
],
|
49 |
outputs=gr.Textbox(label="Customized Career Advice"),
|
50 |
title="Customized Career Advice",
|
51 |
-
description="Generate a customized career advice using field, position name, likes and skills"
|
52 |
)
|
53 |
|
54 |
# Launch the application
|
|
|
2 |
from ibm_watson_machine_learning.foundation_models import Model
|
3 |
import gradio as gr
|
4 |
|
5 |
+
import os
|
6 |
+
|
7 |
+
# Securely load the API key and project ID
|
8 |
+
watsonx_API = os.getenv("WATSONX_API")
|
9 |
+
project_id= os.getenv("PROJECT_ID")
|
10 |
|
11 |
# Model and project settings
|
12 |
model_id = "meta-llama/llama-2-13b-chat" # Directly specifying the LLAMA2 model
|
13 |
|
|
|
14 |
# Generation parameters
|
15 |
gen_parms = {
|
16 |
"max_new_tokens": 512, # Adjust as needed for the length of the cover letter
|
17 |
"temperature": 0.7 # Adjust for creativity
|
18 |
}
|
19 |
|
|
|
20 |
# Initialize the model
|
21 |
+
model = Model(model_id, watsonx_API, gen_parms, project_id)
|
22 |
|
23 |
# Function to generate customized career advice
|
24 |
def generate_career_advice(field, position_name, current_qualifications, likes, skills):
|
|
|
35 |
career_advice = generated_response["results"][0]["generated_text"]
|
36 |
return career_advice
|
37 |
|
|
|
38 |
# Create Gradio interface for the cover letter generation application
|
39 |
career_advice_app = gr.Interface(
|
40 |
fn=generate_career_advice,
|
41 |
+
allow_flagging="never", # Deactivate the flag function in gradio as it is not needed.
|
42 |
inputs=[
|
43 |
gr.Textbox(label="Field of Interest (e.g., healthcare, trades, social service, etc., or enter 'not sure')", placeholder="Enter the field which you are interested in... or type 'not sure'."),
|
44 |
gr.Textbox(label="Position Name (e.g., nurse, personal support worker, software developer, plumber, etc., or enter 'not sure')", placeholder="Enter the name of the position you are interested in... or type 'not sure'"),
|
|
|
48 |
],
|
49 |
outputs=gr.Textbox(label="Customized Career Advice"),
|
50 |
title="Customized Career Advice",
|
51 |
+
description="Generate a customized career advice using field, position name, likes, and skills"
|
52 |
)
|
53 |
|
54 |
# Launch the application
|