willn9 commited on
Commit
78e6035
·
verified ·
1 Parent(s): 3f29208

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -47
app.py CHANGED
@@ -7,55 +7,22 @@ import gradio as gr
7
  watsonx_API = os.getenv("WATSONX_API")
8
  project_id = os.getenv("PROJECT_ID")
9
 
10
- # Model and project settings
11
- model_id = "meta-llama/llama-2-13b-chat" # Directly specifying the LLAMA2 model
12
-
13
- # Set credentials to use the model
14
- my_credentials = {
15
- "url": "https://us-south.ml.cloud.ibm.com",
16
- "apikey": watsonx_API
17
- }
18
-
19
- # Generation parameters
20
- gen_parms = {
21
- "max_new_tokens": 512, # Adjust as needed for the length of the cover letter
22
- "temperature": 0.7 # Adjust for creativity
23
  }
24
 
25
- # Initialize the model with credentials
26
- model = Model(model_id=model_id, credentials=my_credentials, gen_parms=gen_parms, project_id=project_id)
27
-
28
- # Function to generate customized career advice
29
- def generate_career_advice(field, position_name, current_qualifications, likes, skills):
30
- # Craft the prompt for the model
31
- prompt = f"Generate a customized career advice using field: {field}, \
32
- position_name: {position_name}, \
33
- current_qualifications: {current_qualifications}, \
34
- likes: {likes}, \
35
- skills: {skills}."
36
-
37
- generated_response = model.generate(prompt, gen_parms)
38
-
39
- # Extract the generated text
40
- career_advice = generated_response["results"][0]["generated_text"]
41
- return career_advice
42
 
43
- # Create Gradio interface for the career advice generation application
44
- career_advice_app = gr.Interface(
45
- fn=generate_career_advice,
46
- allow_flagging="never", # Deactivate the flag function in gradio as it is not needed.
47
- inputs=[
48
- gr.Textbox(label="Field of Interest (e.g., healthcare, trades, social service, etc., or enter 'not sure')", placeholder="Enter the field which you are interested in... or type 'not sure'."),
49
- gr.Textbox(label="Position Name (e.g., nurse, personal support worker, software developer, plumber, etc., or enter 'not sure')", placeholder="Enter the name of the position you are interested in... or type 'not sure'"),
50
- gr.Textbox(label="Current Qualifications (e.g., studying in high school, high school diploma, college diploma, etc.)", placeholder="Enter your current qualifications ..."),
51
- gr.Textbox(label="Likes (e.g., I like working with my hands, I like to work outside, I like to help people, I like teaching, ...", placeholder="Enter activities you like ...", lines=10),
52
- gr.Textbox(label="Skills (e.g., I am good at math, science, languages, computers, research, hand tools, etc.)", placeholder="Skills ...", lines=10),
53
- ],
54
- outputs=gr.Textbox(label="Customized Career Advice"),
55
- title="Customized Career Advice",
56
- description="Generate a customized career advice using field, position name, likes, and skills"
57
- )
58
 
59
- # Launch the application
60
- career_advice_app.launch(server_name="0.0.0.0", debug=True, server_port=7860, share=True)
61
 
 
7
  watsonx_API = os.getenv("WATSONX_API")
8
  project_id = os.getenv("PROJECT_ID")
9
 
10
+ generate_params = {
11
+ GenParams.MAX_NEW_TOKENS: 250
 
 
 
 
 
 
 
 
 
 
 
12
  }
13
 
14
+ model = Model(
15
+ model_id = 'meta-llama/llama-2-13b-chat', # you can also specify like: ModelTypes.LLAMA_2_70B_CHAT
16
+ params = generate_params,
17
+ credentials={
18
+ "apikey": watsonx_API,
19
+ "url": "https://us-south.ml.cloud.ibm.com"
20
+ },
21
+ project_id= project_id
22
+ )
 
 
 
 
 
 
 
 
23
 
24
+ q = "How to be happy?"
25
+ generated_response = model.generate(prompt=q)
26
+ print(generated_response['results'][0]['generated_text'])
 
 
 
 
 
 
 
 
 
 
 
 
27
 
 
 
28