Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,14 +2,10 @@
|
|
2 |
from ibm_watson_machine_learning.foundation_models import Model
|
3 |
import gradio as gr
|
4 |
|
5 |
-
import os
|
6 |
-
|
7 |
-
# Securely load the API key and project ID
|
8 |
-
watsonx_API = os.getenv("watsonx_API")
|
9 |
-
project_id= os.getenv("project_id")
|
10 |
|
11 |
# Model and project settings
|
12 |
model_id = "meta-llama/llama-2-13b-chat" # Directly specifying the LLAMA2 model
|
|
|
13 |
# Set credentials to use the model
|
14 |
my_credentials = {
|
15 |
"url": "https://us-south.ml.cloud.ibm.com"
|
@@ -27,7 +23,6 @@ verify = False
|
|
27 |
# Initialize the model
|
28 |
model = Model(model_id, my_credentials, gen_parms, project_id, space_id, verify)
|
29 |
|
30 |
-
|
31 |
# Function to generate customized career advice
|
32 |
def generate_career_advice(field, position_name, current_qualifications, likes, skills):
|
33 |
# Craft the prompt for the model
|
@@ -43,10 +38,11 @@ def generate_career_advice(field, position_name, current_qualifications, likes,
|
|
43 |
career_advice = generated_response["results"][0]["generated_text"]
|
44 |
return career_advice
|
45 |
|
|
|
46 |
# Create Gradio interface for the cover letter generation application
|
47 |
career_advice_app = gr.Interface(
|
48 |
fn=generate_career_advice,
|
49 |
-
allow_flagging="never",
|
50 |
inputs=[
|
51 |
gr.Textbox(label="Field of Interest (e.g., healthcare, trades, social service, etc., or enter 'not sure')", placeholder="Enter the field which you are interested in... or type 'not sure'."),
|
52 |
gr.Textbox(label="Position Name (e.g., nurse, personal support worker, software developer, plumber, etc., or enter 'not sure')", placeholder="Enter the name of the position you are interested in... or type 'not sure'"),
|
@@ -56,8 +52,8 @@ career_advice_app = gr.Interface(
|
|
56 |
],
|
57 |
outputs=gr.Textbox(label="Customized Career Advice"),
|
58 |
title="Customized Career Advice",
|
59 |
-
description="Generate a customized career advice using field, position name, likes
|
60 |
)
|
61 |
|
62 |
# Launch the application
|
63 |
-
career_advice_app.launch()
|
|
|
2 |
from ibm_watson_machine_learning.foundation_models import Model
|
3 |
import gradio as gr
|
4 |
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Model and project settings
|
7 |
model_id = "meta-llama/llama-2-13b-chat" # Directly specifying the LLAMA2 model
|
8 |
+
|
9 |
# Set credentials to use the model
|
10 |
my_credentials = {
|
11 |
"url": "https://us-south.ml.cloud.ibm.com"
|
|
|
23 |
# Initialize the model
|
24 |
model = Model(model_id, my_credentials, gen_parms, project_id, space_id, verify)
|
25 |
|
|
|
26 |
# Function to generate customized career advice
|
27 |
def generate_career_advice(field, position_name, current_qualifications, likes, skills):
|
28 |
# Craft the prompt for the model
|
|
|
38 |
career_advice = generated_response["results"][0]["generated_text"]
|
39 |
return career_advice
|
40 |
|
41 |
+
|
42 |
# Create Gradio interface for the cover letter generation application
|
43 |
career_advice_app = gr.Interface(
|
44 |
fn=generate_career_advice,
|
45 |
+
allow_flagging="never", # Deactivate the flag function in gradio as it is not needed.
|
46 |
inputs=[
|
47 |
gr.Textbox(label="Field of Interest (e.g., healthcare, trades, social service, etc., or enter 'not sure')", placeholder="Enter the field which you are interested in... or type 'not sure'."),
|
48 |
gr.Textbox(label="Position Name (e.g., nurse, personal support worker, software developer, plumber, etc., or enter 'not sure')", placeholder="Enter the name of the position you are interested in... or type 'not sure'"),
|
|
|
52 |
],
|
53 |
outputs=gr.Textbox(label="Customized Career Advice"),
|
54 |
title="Customized Career Advice",
|
55 |
+
description="Generate a customized career advice using field, position name, likes and skills"
|
56 |
)
|
57 |
|
58 |
# Launch the application
|
59 |
+
career_advice_app.launch(server_name="0.0.0.0", debug=True, server_port=7860, share=True)
|