willn9 commited on
Commit
df7172c
·
verified ·
1 Parent(s): 30fc153

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -11
app.py CHANGED
@@ -1,8 +1,11 @@
1
  # Import necessary packages
 
2
  from ibm_watson_machine_learning.foundation_models import Model
3
  import gradio as gr
4
 
5
-
 
 
6
 
7
  # Model and project settings
8
  model_id = "meta-llama/llama-2-13b-chat" # Directly specifying the LLAMA2 model
@@ -18,13 +21,8 @@ gen_parms = {
18
  "temperature": 0.7 # Adjust for creativity
19
  }
20
 
21
- watsonx_API = os.getenv("watson_API")
22
- project_id = os.getenv("project_id")
23
- space_id = None
24
- verify = False
25
-
26
  # Initialize the model
27
- model = Model(model_id, my_credentials, gen_parms, watson_API, project_id, space_id, verify)
28
 
29
  # Function to generate customized career advice
30
  def generate_career_advice(field, position_name, current_qualifications, likes, skills):
@@ -41,11 +39,10 @@ def generate_career_advice(field, position_name, current_qualifications, likes,
41
  career_advice = generated_response["results"][0]["generated_text"]
42
  return career_advice
43
 
44
-
45
- # Create Gradio interface for the cover letter generation application
46
  career_advice_app = gr.Interface(
47
  fn=generate_career_advice,
48
- allow_flagging="never", # Deactivate the flag function in gradio as it is not needed.
49
  inputs=[
50
  gr.Textbox(label="Field of Interest (e.g., healthcare, trades, social service, etc., or enter 'not sure')", placeholder="Enter the field which you are interested in... or type 'not sure'."),
51
  gr.Textbox(label="Position Name (e.g., nurse, personal support worker, software developer, plumber, etc., or enter 'not sure')", placeholder="Enter the name of the position you are interested in... or type 'not sure'"),
@@ -55,8 +52,9 @@ career_advice_app = gr.Interface(
55
  ],
56
  outputs=gr.Textbox(label="Customized Career Advice"),
57
  title="Customized Career Advice",
58
- description="Generate a customized career advice using field, position name, likes and skills"
59
  )
60
 
61
  # Launch the application
62
  career_advice_app.launch(server_name="0.0.0.0", debug=True, server_port=7860, share=True)
 
 
1
  # Import necessary packages
2
+ import os
3
  from ibm_watson_machine_learning.foundation_models import Model
4
  import gradio as gr
5
 
6
+ # Securely access the API key and project ID from environment variables
7
+ watsonx_API = os.getenv("WATSONX_API")
8
+ project_id = os.getenv("PROJECT_ID")
9
 
10
  # Model and project settings
11
  model_id = "meta-llama/llama-2-13b-chat" # Directly specifying the LLAMA2 model
 
21
  "temperature": 0.7 # Adjust for creativity
22
  }
23
 
 
 
 
 
 
24
  # Initialize the model
25
+ model = Model(model_id, watsonx_API, gen_parms, project_id)
26
 
27
  # Function to generate customized career advice
28
  def generate_career_advice(field, position_name, current_qualifications, likes, skills):
 
39
  career_advice = generated_response["results"][0]["generated_text"]
40
  return career_advice
41
 
42
+ # Create Gradio interface for the career advice generation application
 
43
  career_advice_app = gr.Interface(
44
  fn=generate_career_advice,
45
+ allow_flagging="never", # Deactivate the flag function in gradio as it is not needed.
46
  inputs=[
47
  gr.Textbox(label="Field of Interest (e.g., healthcare, trades, social service, etc., or enter 'not sure')", placeholder="Enter the field which you are interested in... or type 'not sure'."),
48
  gr.Textbox(label="Position Name (e.g., nurse, personal support worker, software developer, plumber, etc., or enter 'not sure')", placeholder="Enter the name of the position you are interested in... or type 'not sure'"),
 
52
  ],
53
  outputs=gr.Textbox(label="Customized Career Advice"),
54
  title="Customized Career Advice",
55
+ description="Generate a customized career advice using field, position name, likes, and skills"
56
  )
57
 
58
  # Launch the application
59
  career_advice_app.launch(server_name="0.0.0.0", debug=True, server_port=7860, share=True)
60
+