Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,809 Bytes
c94b544 3a43f8c c94b544 1addbb3 1c9ad26 1addbb3 291e403 1c9ad26 d45dbc3 74bd46d c94b544 0fb993f 3941493 c94b544 a4b49a6 c94b544 8d20d8f c94b544 3941493 c94b544 3a43f8c c94b544 a2a24cc 8b827ee c94b544 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
### BACKEND
import requests
import torch
from PIL import Image
from io import BytesIO
import spaces
from diffusers import StableUnCLIPImg2ImgPipeline, UnCLIPImageVariationPipeline, ImagePipelineOutput
import inspect
from typing import List, Optional, Union
import PIL.Image
import torch
from torch.nn import functional as F
from transformers import (
CLIPImageProcessor,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionModelWithProjection,
)
import gradio as gr
class customUnClipPipeline(UnCLIPImageVariationPipeline):
def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt = "",):
batch_size = len(prompt) if isinstance(prompt, list) else 1
# get prompt text embeddings
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
text_mask = text_inputs.attention_mask.bool().to(device)
text_encoder_output = self.text_encoder(text_input_ids.to(device))
prompt_embeds = text_encoder_output.text_embeds
text_encoder_hidden_states = text_encoder_output.last_hidden_state
prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0)
text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0)
if do_classifier_free_guidance:
uncond_tokens = [negative_prompt] * batch_size
max_length = text_input_ids.shape[-1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
uncond_text_mask = uncond_input.attention_mask.bool().to(device)
negative_prompt_embeds_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device))
negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.text_embeds
uncond_text_encoder_hidden_states = negative_prompt_embeds_text_encoder_output.last_hidden_state
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len)
seq_len = uncond_text_encoder_hidden_states.shape[1]
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1)
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view(
batch_size * num_images_per_prompt, seq_len, -1
)
uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0)
# done duplicates
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states])
text_mask = torch.cat([uncond_text_mask, text_mask])
return prompt_embeds, text_encoder_hidden_states, text_mask
@torch.no_grad()
def __call__(
self,
text_input: str = "",
negative_prompt: str = "",
image: Optional[Union[PIL.Image.Image, List[PIL.Image.Image], torch.Tensor]] = None,
num_images_per_prompt: int = 1,
decoder_num_inference_steps: int = 25,
super_res_num_inference_steps: int = 7,
generator: Optional[torch.Generator] = None,
decoder_latents: Optional[torch.Tensor] = None,
super_res_latents: Optional[torch.Tensor] = None,
image_embeddings: Optional[torch.Tensor] = None,
decoder_guidance_scale: float = 8.0,
output_type: Optional[str] = "pil",
return_dict: bool = True,
):
"""
The call function to the pipeline for generation.
Args:
image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.Tensor`):
`Image` or tensor representing an image batch to be used as the starting point. If you provide a
tensor, it needs to be compatible with the [`CLIPImageProcessor`]
[configuration](https://huggingface.co/fusing/karlo-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json).
Can be left as `None` only when `image_embeddings` are passed.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
decoder_num_inference_steps (`int`, *optional*, defaults to 25):
The number of denoising steps for the decoder. More denoising steps usually lead to a higher quality
image at the expense of slower inference.
super_res_num_inference_steps (`int`, *optional*, defaults to 7):
The number of denoising steps for super resolution. More denoising steps usually lead to a higher
quality image at the expense of slower inference.
generator (`torch.Generator`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
decoder_latents (`torch.Tensor` of shape (batch size, channels, height, width), *optional*):
Pre-generated noisy latents to be used as inputs for the decoder.
super_res_latents (`torch.Tensor` of shape (batch size, channels, super res height, super res width), *optional*):
Pre-generated noisy latents to be used as inputs for the decoder.
decoder_guidance_scale (`float`, *optional*, defaults to 4.0):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
image_embeddings (`torch.Tensor`, *optional*):
Pre-defined image embeddings that can be derived from the image encoder. Pre-defined image embeddings
can be passed for tasks like image interpolations. `image` can be left as `None`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
returned where the first element is a list with the generated images.
"""
if image is not None:
if isinstance(image, PIL.Image.Image):
batch_size = 1
elif isinstance(image, list):
batch_size = len(image)
else:
batch_size = image.shape[0]
else:
batch_size = image_embeddings.shape[0]
prompt = [text_input] * batch_size
device = self._execution_device
batch_size = batch_size * num_images_per_prompt
do_classifier_free_guidance = decoder_guidance_scale > 1.0
prompt_embeds, text_encoder_hidden_states, text_mask = self._encode_prompt(
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt ,
)
image_embeddings = self._encode_image(image, device, num_images_per_prompt, image_embeddings)
# decoder
text_encoder_hidden_states, additive_clip_time_embeddings = self.text_proj(
image_embeddings=image_embeddings,
prompt_embeds=prompt_embeds,
text_encoder_hidden_states=text_encoder_hidden_states,
do_classifier_free_guidance=do_classifier_free_guidance,
)
if device.type == "mps":
# HACK: MPS: There is a panic when padding bool tensors,
# so cast to int tensor for the pad and back to bool afterwards
text_mask = text_mask.type(torch.int)
decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=1)
decoder_text_mask = decoder_text_mask.type(torch.bool)
else:
decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=True)
self.decoder_scheduler.set_timesteps(decoder_num_inference_steps, device=device)
decoder_timesteps_tensor = self.decoder_scheduler.timesteps
num_channels_latents = self.decoder.config.in_channels
height = self.decoder.config.sample_size
width = self.decoder.config.sample_size
if decoder_latents is None:
decoder_latents = self.prepare_latents(
(batch_size, num_channels_latents, height, width),
text_encoder_hidden_states.dtype,
device,
generator,
decoder_latents,
self.decoder_scheduler,
)
for i, t in enumerate(self.progress_bar(decoder_timesteps_tensor)):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([decoder_latents] * 2) if do_classifier_free_guidance else decoder_latents
noise_pred = self.decoder(
sample=latent_model_input,
timestep=t,
encoder_hidden_states=text_encoder_hidden_states,
class_labels=additive_clip_time_embeddings,
attention_mask=decoder_text_mask,
).sample
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred_uncond, _ = noise_pred_uncond.split(latent_model_input.shape[1], dim=1)
noise_pred_text, predicted_variance = noise_pred_text.split(latent_model_input.shape[1], dim=1)
noise_pred = noise_pred_uncond + decoder_guidance_scale * (noise_pred_text - noise_pred_uncond)
noise_pred = torch.cat([noise_pred, predicted_variance], dim=1)
if i + 1 == decoder_timesteps_tensor.shape[0]:
prev_timestep = None
else:
prev_timestep = decoder_timesteps_tensor[i + 1]
# compute the previous noisy sample x_t -> x_t-1
decoder_latents = self.decoder_scheduler.step(
noise_pred, t, decoder_latents, prev_timestep=prev_timestep, generator=generator
).prev_sample
decoder_latents = decoder_latents.clamp(-1, 1)
image_small = decoder_latents
# done decoder
# super res
self.super_res_scheduler.set_timesteps(super_res_num_inference_steps, device=device)
super_res_timesteps_tensor = self.super_res_scheduler.timesteps
channels = self.super_res_first.config.in_channels // 2
height = self.super_res_first.config.sample_size
width = self.super_res_first.config.sample_size
if super_res_latents is None:
super_res_latents = self.prepare_latents(
(batch_size, channels, height, width),
image_small.dtype,
device,
generator,
super_res_latents,
self.super_res_scheduler,
)
if device.type == "mps":
# MPS does not support many interpolations
image_upscaled = F.interpolate(image_small, size=[height, width])
else:
interpolate_antialias = {}
if "antialias" in inspect.signature(F.interpolate).parameters:
interpolate_antialias["antialias"] = True
image_upscaled = F.interpolate(
image_small, size=[height, width], mode="bicubic", align_corners=False, **interpolate_antialias
)
for i, t in enumerate(self.progress_bar(super_res_timesteps_tensor)):
# no classifier free guidance
if i == super_res_timesteps_tensor.shape[0] - 1:
unet = self.super_res_last
else:
unet = self.super_res_first
latent_model_input = torch.cat([super_res_latents, image_upscaled], dim=1)
noise_pred = unet(
sample=latent_model_input,
timestep=t,
).sample
if i + 1 == super_res_timesteps_tensor.shape[0]:
prev_timestep = None
else:
prev_timestep = super_res_timesteps_tensor[i + 1]
# compute the previous noisy sample x_t -> x_t-1
super_res_latents = self.super_res_scheduler.step(
noise_pred, t, super_res_latents, prev_timestep=prev_timestep, generator=generator
).prev_sample
image = super_res_latents
# done super res
self.maybe_free_model_hooks()
# post processing
image = image * 0.5 + 0.5
image = image.clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)
### ADDITIONAL PIPELINE CODE FOR KARLO
torch_device = 'cpu'
pipe = customUnClipPipeline.from_pretrained("kakaobrain/karlo-v1-alpha-image-variations", torch_dtype=torch.float32, trust_remote_code=True,
# device=torch_device,
# device_map='cpu'
)
pipe.to("cuda")
# pipe.enable_model_cpu_offload()
# func for getting tensor embeddings from cand image
def load_image(image_dir):
image = Image.open(image_dir).convert("RGB")
return image
def load_img_from_URL(URL):
response = requests.get(URL)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
return init_image
def embed_img(input_image):
tokens = pipe.feature_extractor(input_image).to(torch_device)
img_model = pipe.image_encoder.to(torch_device)
with torch.no_grad():
embeds = img_model(torch.tensor(tokens.pixel_values[0]).unsqueeze(0).to(torch_device))
return embeds.image_embeds.to(torch_device)
def localimg_2_embed(image_dir):
embeds = embed_img(load_image(image_dir))
return embeds
def URLimg_2_embed(URL):
embeds = embed_img(load_img_from_URL(URL))
return embeds
# random generator for softmaxxed outputs
def random_probdist(num_cands):
random_numbers = torch.randn(num_cands)
softmax_output = torch.nn.functional.softmax(random_numbers, dim=0).reshape((num_cands,1))
return softmax_output
def scalesum_candtensors(list_scale, cand_tensors):
'''
quick note - just make sure your list_scale is the same length as ur cand_tensors, and also adds up to 1
'''
assert sum(list_scale) == 1, f"you didn't input a valid probability distribution - make sure your scales add up to 1, currently it adds up to {sum(list_scale)}"
assert len(list_scale) == len(cand_tensors), f"your scale list is not the same length as your list of candidate tensors. len list = {len(list_scale)}, len cand tensors = {len(cand_tensors)}"
scaled = torch.tensor(list_scale), cand_tensors
output = scaled.sum(dim=0)
return output
def random_candtensor(cand_tensors):
scaled = random_probdist(len(cand_tensors)) * cand_tensors
output = scaled.sum(dim=0)
return output
# for displaying images
def image_grid(imgs, rows, cols):
assert len(imgs) == rows*cols
w, h = imgs[0].size
grid = Image.new('RGB', size=(cols*w, rows*h))
grid_w, grid_h = grid.size
for i, img in enumerate(imgs):
grid.paste(img, box=(i%cols*w, i//cols*h))
return grid
chaosclicker_willtensor = localimg_2_embed('willpaint-imgs/chaosclicker-willpaint.png').to(torch_device)
contentcnsr_willtensor = localimg_2_embed('willpaint-imgs/contentconnoisseur-willpaint.png').to(torch_device)
digdaydrmr_willtensor = localimg_2_embed('willpaint-imgs/digitaldaydreamer-willpaint.png').to(torch_device)
ecoexplr_willtensor = localimg_2_embed('willpaint-imgs/ecoexplorer-willpaint.png').to(torch_device)
fandomfox_willtensor = localimg_2_embed('willpaint-imgs/fandomfox-willpaint.png').to(torch_device)
mememaven_willtensor = localimg_2_embed('willpaint-imgs/mememaven-willpaint.png').to(torch_device)
newsnerd_willtensor = localimg_2_embed('willpaint-imgs/newnerd-willpaint.png').to(torch_device)
nostalgicnvgtr_willtensor = localimg_2_embed('willpaint-imgs/nostalgicnavigator-willpaint.png').to(torch_device)
scrollseeker_willtensor = localimg_2_embed('willpaint-imgs/scrollseeker-willpaint.png').to(torch_device)
trendtracker_willtensor = localimg_2_embed('willpaint-imgs/trendtracker-willpaint.png').to(torch_device)
will_cand_tensors = torch.cat([chaosclicker_willtensor,
contentcnsr_willtensor ,
digdaydrmr_willtensor,
ecoexplr_willtensor,
fandomfox_willtensor,
mememaven_willtensor,
newsnerd_willtensor,
nostalgicnvgtr_willtensor,
scrollseeker_willtensor,
trendtracker_willtensor,], dim=0)
### FUNCTION FOR EXECUTION
@spaces.GPU
def generate_freak():
will_randomised_input = random_candtensor(will_cand_tensors).unsqueeze(0)
#will_randomised_input
output = pipe(image_embeddings=will_randomised_input.to("cuda"), num_images_per_prompt=1, decoder_num_inference_steps = 15, super_res_num_inference_steps = 4)
return output.images[0]
### GRADIO BACKEND
gr.Interface(
generate_freak,
inputs=None,
outputs=gr.Image(),
title="Make a little freak!",
description="click the button and make a freak!"
).launch() |