|
|
|
import requests |
|
import torch |
|
from PIL import Image |
|
from io import BytesIO |
|
import spaces |
|
|
|
from diffusers import StableUnCLIPImg2ImgPipeline, UnCLIPImageVariationPipeline, ImagePipelineOutput |
|
|
|
import inspect |
|
from typing import List, Optional, Union |
|
|
|
import PIL.Image |
|
import torch |
|
from torch.nn import functional as F |
|
from transformers import ( |
|
CLIPImageProcessor, |
|
CLIPTextModelWithProjection, |
|
CLIPTokenizer, |
|
CLIPVisionModelWithProjection, |
|
) |
|
|
|
import gradio as gr |
|
|
|
|
|
class customUnClipPipeline(UnCLIPImageVariationPipeline): |
|
def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt = "",): |
|
batch_size = len(prompt) if isinstance(prompt, list) else 1 |
|
|
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
text_mask = text_inputs.attention_mask.bool().to(device) |
|
text_encoder_output = self.text_encoder(text_input_ids.to(device)) |
|
|
|
prompt_embeds = text_encoder_output.text_embeds |
|
text_encoder_hidden_states = text_encoder_output.last_hidden_state |
|
|
|
prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) |
|
text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) |
|
text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
|
if do_classifier_free_guidance: |
|
uncond_tokens = [negative_prompt] * batch_size |
|
|
|
max_length = text_input_ids.shape[-1] |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
uncond_text_mask = uncond_input.attention_mask.bool().to(device) |
|
negative_prompt_embeds_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device)) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.text_embeds |
|
uncond_text_encoder_hidden_states = negative_prompt_embeds_text_encoder_output.last_hidden_state |
|
|
|
|
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len) |
|
|
|
seq_len = uncond_text_encoder_hidden_states.shape[1] |
|
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) |
|
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view( |
|
batch_size * num_images_per_prompt, seq_len, -1 |
|
) |
|
uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states]) |
|
|
|
text_mask = torch.cat([uncond_text_mask, text_mask]) |
|
|
|
return prompt_embeds, text_encoder_hidden_states, text_mask |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
text_input: str = "", |
|
negative_prompt: str = "", |
|
image: Optional[Union[PIL.Image.Image, List[PIL.Image.Image], torch.Tensor]] = None, |
|
num_images_per_prompt: int = 1, |
|
decoder_num_inference_steps: int = 25, |
|
super_res_num_inference_steps: int = 7, |
|
generator: Optional[torch.Generator] = None, |
|
decoder_latents: Optional[torch.Tensor] = None, |
|
super_res_latents: Optional[torch.Tensor] = None, |
|
image_embeddings: Optional[torch.Tensor] = None, |
|
decoder_guidance_scale: float = 8.0, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
): |
|
""" |
|
The call function to the pipeline for generation. |
|
|
|
Args: |
|
image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.Tensor`): |
|
`Image` or tensor representing an image batch to be used as the starting point. If you provide a |
|
tensor, it needs to be compatible with the [`CLIPImageProcessor`] |
|
[configuration](https://huggingface.co/fusing/karlo-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json). |
|
Can be left as `None` only when `image_embeddings` are passed. |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
decoder_num_inference_steps (`int`, *optional*, defaults to 25): |
|
The number of denoising steps for the decoder. More denoising steps usually lead to a higher quality |
|
image at the expense of slower inference. |
|
super_res_num_inference_steps (`int`, *optional*, defaults to 7): |
|
The number of denoising steps for super resolution. More denoising steps usually lead to a higher |
|
quality image at the expense of slower inference. |
|
generator (`torch.Generator`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
decoder_latents (`torch.Tensor` of shape (batch size, channels, height, width), *optional*): |
|
Pre-generated noisy latents to be used as inputs for the decoder. |
|
super_res_latents (`torch.Tensor` of shape (batch size, channels, super res height, super res width), *optional*): |
|
Pre-generated noisy latents to be used as inputs for the decoder. |
|
decoder_guidance_scale (`float`, *optional*, defaults to 4.0): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
image_embeddings (`torch.Tensor`, *optional*): |
|
Pre-defined image embeddings that can be derived from the image encoder. Pre-defined image embeddings |
|
can be passed for tasks like image interpolations. `image` can be left as `None`. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. |
|
|
|
Returns: |
|
[`~pipelines.ImagePipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is |
|
returned where the first element is a list with the generated images. |
|
""" |
|
if image is not None: |
|
if isinstance(image, PIL.Image.Image): |
|
batch_size = 1 |
|
elif isinstance(image, list): |
|
batch_size = len(image) |
|
else: |
|
batch_size = image.shape[0] |
|
else: |
|
batch_size = image_embeddings.shape[0] |
|
|
|
prompt = [text_input] * batch_size |
|
|
|
device = self._execution_device |
|
|
|
batch_size = batch_size * num_images_per_prompt |
|
|
|
do_classifier_free_guidance = decoder_guidance_scale > 1.0 |
|
|
|
prompt_embeds, text_encoder_hidden_states, text_mask = self._encode_prompt( |
|
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt , |
|
) |
|
|
|
image_embeddings = self._encode_image(image, device, num_images_per_prompt, image_embeddings) |
|
|
|
|
|
text_encoder_hidden_states, additive_clip_time_embeddings = self.text_proj( |
|
image_embeddings=image_embeddings, |
|
prompt_embeds=prompt_embeds, |
|
text_encoder_hidden_states=text_encoder_hidden_states, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
) |
|
|
|
if device.type == "mps": |
|
|
|
|
|
text_mask = text_mask.type(torch.int) |
|
decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=1) |
|
decoder_text_mask = decoder_text_mask.type(torch.bool) |
|
else: |
|
decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=True) |
|
|
|
self.decoder_scheduler.set_timesteps(decoder_num_inference_steps, device=device) |
|
decoder_timesteps_tensor = self.decoder_scheduler.timesteps |
|
|
|
num_channels_latents = self.decoder.config.in_channels |
|
height = self.decoder.config.sample_size |
|
width = self.decoder.config.sample_size |
|
|
|
if decoder_latents is None: |
|
decoder_latents = self.prepare_latents( |
|
(batch_size, num_channels_latents, height, width), |
|
text_encoder_hidden_states.dtype, |
|
device, |
|
generator, |
|
decoder_latents, |
|
self.decoder_scheduler, |
|
) |
|
|
|
for i, t in enumerate(self.progress_bar(decoder_timesteps_tensor)): |
|
|
|
latent_model_input = torch.cat([decoder_latents] * 2) if do_classifier_free_guidance else decoder_latents |
|
|
|
noise_pred = self.decoder( |
|
sample=latent_model_input, |
|
timestep=t, |
|
encoder_hidden_states=text_encoder_hidden_states, |
|
class_labels=additive_clip_time_embeddings, |
|
attention_mask=decoder_text_mask, |
|
).sample |
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred_uncond, _ = noise_pred_uncond.split(latent_model_input.shape[1], dim=1) |
|
noise_pred_text, predicted_variance = noise_pred_text.split(latent_model_input.shape[1], dim=1) |
|
noise_pred = noise_pred_uncond + decoder_guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
noise_pred = torch.cat([noise_pred, predicted_variance], dim=1) |
|
|
|
if i + 1 == decoder_timesteps_tensor.shape[0]: |
|
prev_timestep = None |
|
else: |
|
prev_timestep = decoder_timesteps_tensor[i + 1] |
|
|
|
|
|
decoder_latents = self.decoder_scheduler.step( |
|
noise_pred, t, decoder_latents, prev_timestep=prev_timestep, generator=generator |
|
).prev_sample |
|
|
|
decoder_latents = decoder_latents.clamp(-1, 1) |
|
|
|
image_small = decoder_latents |
|
|
|
|
|
|
|
|
|
|
|
self.super_res_scheduler.set_timesteps(super_res_num_inference_steps, device=device) |
|
super_res_timesteps_tensor = self.super_res_scheduler.timesteps |
|
|
|
channels = self.super_res_first.config.in_channels // 2 |
|
height = self.super_res_first.config.sample_size |
|
width = self.super_res_first.config.sample_size |
|
|
|
if super_res_latents is None: |
|
super_res_latents = self.prepare_latents( |
|
(batch_size, channels, height, width), |
|
image_small.dtype, |
|
device, |
|
generator, |
|
super_res_latents, |
|
self.super_res_scheduler, |
|
) |
|
|
|
if device.type == "mps": |
|
|
|
image_upscaled = F.interpolate(image_small, size=[height, width]) |
|
else: |
|
interpolate_antialias = {} |
|
if "antialias" in inspect.signature(F.interpolate).parameters: |
|
interpolate_antialias["antialias"] = True |
|
|
|
image_upscaled = F.interpolate( |
|
image_small, size=[height, width], mode="bicubic", align_corners=False, **interpolate_antialias |
|
) |
|
|
|
for i, t in enumerate(self.progress_bar(super_res_timesteps_tensor)): |
|
|
|
|
|
if i == super_res_timesteps_tensor.shape[0] - 1: |
|
unet = self.super_res_last |
|
else: |
|
unet = self.super_res_first |
|
|
|
latent_model_input = torch.cat([super_res_latents, image_upscaled], dim=1) |
|
|
|
noise_pred = unet( |
|
sample=latent_model_input, |
|
timestep=t, |
|
).sample |
|
|
|
if i + 1 == super_res_timesteps_tensor.shape[0]: |
|
prev_timestep = None |
|
else: |
|
prev_timestep = super_res_timesteps_tensor[i + 1] |
|
|
|
|
|
super_res_latents = self.super_res_scheduler.step( |
|
noise_pred, t, super_res_latents, prev_timestep=prev_timestep, generator=generator |
|
).prev_sample |
|
|
|
image = super_res_latents |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
|
|
|
|
image = image * 0.5 + 0.5 |
|
image = image.clamp(0, 1) |
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy() |
|
|
|
if output_type == "pil": |
|
image = self.numpy_to_pil(image) |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return ImagePipelineOutput(images=image) |
|
|
|
|
|
|
|
torch_device = torch.device('cpu') |
|
pipe = customUnClipPipeline.from_pretrained("kakaobrain/karlo-v1-alpha-image-variations", torch_dtype=torch.float32, trust_remote_code=True, |
|
|
|
|
|
) |
|
pipe.to(torch.device("cuda")) |
|
|
|
|
|
|
|
|
|
|
|
def load_image(image_dir): |
|
image = Image.open(image_dir).convert("RGB") |
|
return image |
|
|
|
def load_img_from_URL(URL): |
|
response = requests.get(URL) |
|
init_image = Image.open(BytesIO(response.content)).convert("RGB") |
|
return init_image |
|
|
|
def embed_img(input_image): |
|
tokens = pipe.feature_extractor(input_image).to(torch_device) |
|
img_model = pipe.image_encoder.to(torch_device) |
|
with torch.no_grad(): |
|
embeds = img_model(torch.tensor(tokens.pixel_values[0]).unsqueeze(0).to(torch_device)) |
|
|
|
return embeds.image_embeds.to(torch_device) |
|
|
|
def localimg_2_embed(image_dir): |
|
embeds = embed_img(load_image(image_dir)) |
|
return embeds |
|
|
|
def URLimg_2_embed(URL): |
|
embeds = embed_img(load_img_from_URL(URL)) |
|
return embeds |
|
|
|
|
|
|
|
|
|
def random_probdist(num_cands): |
|
random_numbers = torch.randn(num_cands) |
|
softmax_output = torch.nn.functional.softmax(random_numbers, dim=0).reshape((num_cands,1)) |
|
return softmax_output |
|
|
|
|
|
def scalesum_candtensors(list_scale, cand_tensors): |
|
''' |
|
quick note - just make sure your list_scale is the same length as ur cand_tensors, and also adds up to 1 |
|
''' |
|
assert sum(list_scale) == 1, f"you didn't input a valid probability distribution - make sure your scales add up to 1, currently it adds up to {sum(list_scale)}" |
|
assert len(list_scale) == len(cand_tensors), f"your scale list is not the same length as your list of candidate tensors. len list = {len(list_scale)}, len cand tensors = {len(cand_tensors)}" |
|
|
|
scaled = torch.tensor(list_scale), cand_tensors |
|
output = scaled.sum(dim=0) |
|
return output |
|
|
|
|
|
def random_candtensor(cand_tensors): |
|
scaled = random_probdist(len(cand_tensors)) * cand_tensors |
|
output = scaled.sum(dim=0) |
|
return output |
|
|
|
|
|
|
|
def image_grid(imgs, rows, cols): |
|
assert len(imgs) == rows*cols |
|
|
|
w, h = imgs[0].size |
|
grid = Image.new('RGB', size=(cols*w, rows*h)) |
|
grid_w, grid_h = grid.size |
|
|
|
for i, img in enumerate(imgs): |
|
grid.paste(img, box=(i%cols*w, i//cols*h)) |
|
return grid |
|
|
|
|
|
chaosclicker_willtensor = localimg_2_embed('willpaint-imgs/chaosclicker-willpaint.png').to(torch_device) |
|
contentcnsr_willtensor = localimg_2_embed('willpaint-imgs/contentconnoisseur-willpaint.png').to(torch_device) |
|
digdaydrmr_willtensor = localimg_2_embed('willpaint-imgs/digitaldaydreamer-willpaint.png').to(torch_device) |
|
ecoexplr_willtensor = localimg_2_embed('willpaint-imgs/ecoexplorer-willpaint.png').to(torch_device) |
|
fandomfox_willtensor = localimg_2_embed('willpaint-imgs/fandomfox-willpaint.png').to(torch_device) |
|
mememaven_willtensor = localimg_2_embed('willpaint-imgs/mememaven-willpaint.png').to(torch_device) |
|
newsnerd_willtensor = localimg_2_embed('willpaint-imgs/newnerd-willpaint.png').to(torch_device) |
|
nostalgicnvgtr_willtensor = localimg_2_embed('willpaint-imgs/nostalgicnavigator-willpaint.png').to(torch_device) |
|
scrollseeker_willtensor = localimg_2_embed('willpaint-imgs/scrollseeker-willpaint.png').to(torch_device) |
|
trendtracker_willtensor = localimg_2_embed('willpaint-imgs/trendtracker-willpaint.png').to(torch_device) |
|
|
|
|
|
will_cand_tensors = torch.cat([chaosclicker_willtensor, |
|
contentcnsr_willtensor , |
|
digdaydrmr_willtensor, |
|
ecoexplr_willtensor, |
|
fandomfox_willtensor, |
|
mememaven_willtensor, |
|
newsnerd_willtensor, |
|
nostalgicnvgtr_willtensor, |
|
scrollseeker_willtensor, |
|
trendtracker_willtensor,], dim=0) |
|
|
|
|
|
|
|
|
|
@spaces.GPU |
|
def generate_freak(): |
|
will_randomised_input = random_candtensor(will_cand_tensors).unsqueeze(0) |
|
|
|
output = pipe(image_embeddings=will_randomised_input.to("cuda"), num_images_per_prompt=1, decoder_num_inference_steps = 15, super_res_num_inference_steps = 4) |
|
return output.images[0] |
|
|
|
|
|
gr.Interface( |
|
generate_freak, |
|
inputs=None, |
|
outputs=gr.Image(), |
|
title="Make a little freak!", |
|
description="click the button and make a freak!" |
|
).launch() |