Spaces:
Running
on
Zero
Running
on
Zero
TRY ME BITCH
Browse files
app.py
CHANGED
@@ -314,11 +314,12 @@ class customUnClipPipeline(UnCLIPImageVariationPipeline):
|
|
314 |
|
315 |
|
316 |
### ADDITIONAL PIPELINE CODE FOR KARLO
|
317 |
-
torch_device = '
|
318 |
pipe = customUnClipPipeline.from_pretrained("kakaobrain/karlo-v1-alpha-image-variations", torch_dtype=torch.float32, trust_remote_code=True,
|
319 |
# accelerator='ort', device=torch_device
|
|
|
320 |
)
|
321 |
-
pipe.to(torch_device)
|
322 |
# pipe.enable_model_cpu_offload()
|
323 |
|
324 |
|
@@ -333,7 +334,6 @@ def load_img_from_URL(URL):
|
|
333 |
init_image = Image.open(BytesIO(response.content)).convert("RGB")
|
334 |
return init_image
|
335 |
|
336 |
-
@spaces.GPU
|
337 |
def embed_img(input_image):
|
338 |
tokens = pipe.feature_extractor(input_image).to(torch_device)
|
339 |
img_model = pipe.image_encoder.to(torch_device)
|
@@ -419,7 +419,7 @@ will_cand_tensors = torch.cat([chaosclicker_willtensor,
|
|
419 |
@spaces.GPU
|
420 |
def generate_freak():
|
421 |
will_randomised_input = random_candtensor(will_cand_tensors).unsqueeze(0)
|
422 |
-
will_randomised_input.to(
|
423 |
output = pipe(image_embeddings=will_randomised_input, num_images_per_prompt=1, decoder_num_inference_steps = 15, super_res_num_inference_steps = 4)
|
424 |
return output.images[0]
|
425 |
|
|
|
314 |
|
315 |
|
316 |
### ADDITIONAL PIPELINE CODE FOR KARLO
|
317 |
+
torch_device = 'cpu'
|
318 |
pipe = customUnClipPipeline.from_pretrained("kakaobrain/karlo-v1-alpha-image-variations", torch_dtype=torch.float32, trust_remote_code=True,
|
319 |
# accelerator='ort', device=torch_device
|
320 |
+
device_map='cpu'
|
321 |
)
|
322 |
+
# pipe.to(torch_device)
|
323 |
# pipe.enable_model_cpu_offload()
|
324 |
|
325 |
|
|
|
334 |
init_image = Image.open(BytesIO(response.content)).convert("RGB")
|
335 |
return init_image
|
336 |
|
|
|
337 |
def embed_img(input_image):
|
338 |
tokens = pipe.feature_extractor(input_image).to(torch_device)
|
339 |
img_model = pipe.image_encoder.to(torch_device)
|
|
|
419 |
@spaces.GPU
|
420 |
def generate_freak():
|
421 |
will_randomised_input = random_candtensor(will_cand_tensors).unsqueeze(0)
|
422 |
+
will_randomised_input.to("cuda")
|
423 |
output = pipe(image_embeddings=will_randomised_input, num_images_per_prompt=1, decoder_num_inference_steps = 15, super_res_num_inference_steps = 4)
|
424 |
return output.images[0]
|
425 |
|