wilmerags commited on
Commit
b2c3406
1 Parent(s): 9460aa5

feat: Add preprocessing function to improve quality of topic detection

Browse files
Files changed (1) hide show
  1. app.py +39 -3
app.py CHANGED
@@ -1,10 +1,13 @@
1
  from typing import List
2
 
3
- import numpy as np
4
-
5
- import streamlit as st
6
  import tweepy
7
  import hdbscan
 
 
 
 
 
8
 
9
  from bokeh.models import ColumnDataSource, HoverTool, Label
10
  from bokeh.palettes import Colorblind as Pallete
@@ -21,6 +24,38 @@ model_to_use = {
21
  "Use all the ones you know (~15 lang)": "paraphrase-multilingual-MiniLM-L12-v2"
22
  }
23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  # Original implementation from: https://huggingface.co/spaces/edugp/embedding-lenses/blob/main/app.py
25
  SEED = 42
26
 
@@ -137,6 +172,7 @@ if go_btn and tw_user != '':
137
  tweets_objs += tweets_response.data
138
  tweets_txt = [tweet.text for tweet in tweets_objs]
139
  tweets_txt = list(set(tweets_txt))
 
140
  # plot = generate_plot(df, text_column, label_column, sample, dimensionality_reduction_function, model)
141
  plot = generate_plot(tweets_txt, model, tw_user)
142
  st.bokeh_chart(plot)
 
1
  from typing import List
2
 
3
+ import re
 
 
4
  import tweepy
5
  import hdbscan
6
+ import numpy as np
7
+ import streamlit as st
8
+
9
+
10
+ from gensim.utils import deaccent # gensim==3.8.1
11
 
12
  from bokeh.models import ColumnDataSource, HoverTool, Label
13
  from bokeh.palettes import Colorblind as Pallete
 
24
  "Use all the ones you know (~15 lang)": "paraphrase-multilingual-MiniLM-L12-v2"
25
  }
26
 
27
+ def remove_unk_chars(txt_list: List[str]):
28
+ txt_list = [re.sub('\s+', ' ', tweet) for tweet in txt_list]
29
+ txt_list = [re.sub("\'", "", tweet) for tweet in txt_list]
30
+ txt_list = [deaccent(tweet).lower() for tweet in txt_list]
31
+
32
+ def _remove_urls(txt_list: List[str]):
33
+ url_regex = re.compile(
34
+ r'^(?:http|ftp)s?://' # http:// or https://
35
+ r'(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+(?:[A-Z]{2,6}\.?|[A-Z0-9-]{2,}\.?)|' #domain...
36
+ r'localhost|' #localhost...
37
+ r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})' # ...or ip
38
+ r'(?::\d+)?' # optional port
39
+ r'(?:/?|[/?]\S+)$', re.IGNORECASE)
40
+ txt_list = [tweet.split(' ') for tweet in txt_list]
41
+ return [' '.join([word for word in tweet if not bool(re.match(url_regex, word))]) for tweet in txt_list]
42
+
43
+ def _remove_punctuation(txt_list: List[str]):
44
+ punctuation = string.punctuation + '¿¡|'
45
+ txt_list = [tweet.split(' ') for tweet in txt_list]
46
+ return [' '.join([word.translate(str.maketrans('', '', punctuation)) for word in tweet]) for tweet in txt_list]
47
+
48
+ preprocess_pipeline = [
49
+ _remove_unk_chars,
50
+ _remove_urls,
51
+ _remove_punctuation
52
+ ]
53
+
54
+ def preprocess(txt_list: str):
55
+ for op in preprocess_pipeline:
56
+ txt_list = op(txt_list)
57
+ return txt_list
58
+
59
  # Original implementation from: https://huggingface.co/spaces/edugp/embedding-lenses/blob/main/app.py
60
  SEED = 42
61
 
 
172
  tweets_objs += tweets_response.data
173
  tweets_txt = [tweet.text for tweet in tweets_objs]
174
  tweets_txt = list(set(tweets_txt))
175
+ tweets_txt = preproces(tweets_txt)
176
  # plot = generate_plot(df, text_column, label_column, sample, dimensionality_reduction_function, model)
177
  plot = generate_plot(tweets_txt, model, tw_user)
178
  st.bokeh_chart(plot)