import streamlit as st import tweepy @st.cache(show_spinner=False, allow_output_mutation=True) def load_model(model_name: str) -> SentenceTransformer: embedder = model_name return SentenceTransformer(embedder) client = tweepy.Client(bearer_token=st.secrets["tw_bearer_token"]) model_to_use = { "English": "all-MiniLM-L12-v2", "Use all the ones you know (~15 lang)": "paraphrase-multilingual-MiniLM-L12-v2" } st.title("Tweet-SNEst") st.write("Visualize tweets embeddings in 2D using colors for topics labels.") col1, col2 = st.columns(2) with col1: tw_user = st.text_input("Twitter handle", "huggingface") with col2: sample = st.number_input("Maximum number of tweets to use", 1, 300, 100, 10) expected_lang = st.radio( "What language should be assumed to be found?", ('English', 'Use all the ones you know (~15 lang)')) usr = client.get_user(username=tw_user) st.write(usr.data.id)