winglian's picture
Update app.py
883f89e verified
import gradio as gr
import bittensor as bt
import typing
from bittensor.extrinsics.serving import get_metadata
from dataclasses import dataclass
import requests
import math
import os
import datetime
import time
from dotenv import load_dotenv
from huggingface_hub import HfApi
from apscheduler.schedulers.background import BackgroundScheduler
from tqdm import tqdm
load_dotenv()
FONT = """<link href="https://fonts.cdnfonts.com/css/jmh-typewriter" rel="stylesheet">"""
TITLE = """<h1 align="center" id="space-title" class="typewriter">Subnet 6 Leaderboard</h1>"""
IMAGE = """<a href="https://discord.gg/jqVphNsB4H" target="_blank"><img src="https://i.ibb.co/88wyVQ7/nousgirl.png" alt="nousgirl" style="margin: auto; width: 20%; border: 0;" /></a>"""
HEADER = """<h2 align="center" class="typewriter"><a href="https://github.com/NousResearch/finetuning-subnet" target="_blank">Subnet 6</a> is a <a href="https://bittensor.com/" target="_blank">Bittensor</a> subnet that incentivizes the creation of the best open models by evaluating submissions on a constant stream of newly generated synthetic GPT-4 data. The models with the best <a href="https://github.com/NousResearch/finetuning-subnet/blob/master/docs/validator.md" target="_blank">head-to-head loss</a> on the evaluation data receive a steady emission of TAO.</h3>"""
EVALUATION_DETAILS = """<b>Name</b> is the 🤗 Hugging Face model name (click to go to the model card). <b>Rewards / Day</b> are the expected rewards per day for each model. <b>Perplexity</b> is represents the loss on all of the evaluation data for the model as calculated by the validator (lower is better). <b>UID</b> is the Bittensor user id of the submitter. <b>Block</b> is the Bittensor block that the model was submitted in. More stats on <a href="https://taostats.io/subnets/netuid-6/" target="_blank">taostats</a>."""
EVALUATION_HEADER = """<h3 align="center">Shows the latest internal evaluation statistics as calculated by a validator run by Nous Research</h3>"""
H4_TOKEN = os.environ.get("H4_TOKEN", None)
API = HfApi(token=H4_TOKEN)
REPO_ID = "winglian/finetuning_subnet_leaderboard"
METAGRAPH_RETRIES = 10
METAGRAPH_DELAY_SECS = 30
NETUID = 6
SUBNET_START_BLOCK = 2225782
SECONDS_PER_BLOCK = 12
@dataclass
class Competition:
id: str
name: str
COMPETITIONS = [Competition(id="m1", name="mistral-7b"), Competition(id="g1", name="gemma-2b")]
DEFAULT_COMPETITION_ID = "g1"
def get_subtensor_and_metagraph() -> typing.Tuple[bt.subtensor, bt.metagraph]:
for i in range(0, METAGRAPH_RETRIES):
try:
subtensor: bt.subtensor = bt.subtensor("finney")
metagraph: bt.metagraph = subtensor.metagraph(6, lite=False)
return subtensor, metagraph
except:
if i == METAGRAPH_RETRIES - 1:
raise
time.sleep(METAGRAPH_DELAY_SECS)
raise RuntimeError()
@dataclass
class ModelData:
uid: int
hotkey: str
namespace: str
name: str
commit: str
hash: str
block: int
incentive: float
emission: float
competition: str
@classmethod
def from_compressed_str(cls, uid: int, hotkey: str, cs: str, block: int, incentive: float, emission: float):
"""Returns an instance of this class from a compressed string representation"""
tokens = cs.split(":")
return ModelData(
uid=uid,
hotkey=hotkey,
namespace=tokens[0],
name=tokens[1],
commit=tokens[2] if tokens[2] != "None" else None,
hash=tokens[3] if tokens[3] != "None" else None,
competition=tokens[4] if len(tokens) > 4 and tokens[4] != "None" else DEFAULT_COMPETITION_ID,
block=block,
incentive=incentive,
emission=emission
)
def get_tao_price() -> float:
for i in range(0, METAGRAPH_RETRIES):
try:
return float(requests.get("https://api.kucoin.com/api/v1/market/stats?symbol=TAO-USDT").json()["data"]["last"])
except:
if i == METAGRAPH_RETRIES - 1:
raise
time.sleep(METAGRAPH_DELAY_SECS)
raise RuntimeError()
def get_validator_weights(metagraph: bt.metagraph) -> typing.Dict[int, typing.Tuple[float, int, typing.Dict[int, float]]]:
ret = {}
uid_list = metagraph.uids.tolist()
for uid in tqdm(uid_list, desc="get_validator_weights"):
vtrust = metagraph.validator_trust[uid].item()
if vtrust > 0:
ret[uid] = (vtrust, metagraph.S[uid].item(), {})
for ouid in metagraph.uids.tolist():
if ouid == uid:
continue
weight = round(metagraph.weights[uid][ouid].item(), 4)
if weight > 0:
ret[uid][-1][ouid] = weight
return ret
def get_subnet_data(subtensor: bt.subtensor, metagraph: bt.metagraph) -> typing.List[ModelData]:
result = []
uid_list = metagraph.uids.tolist()
for uid in tqdm(uid_list, desc="get_subnet_data"):
hotkey = metagraph.hotkeys[uid]
metadata = get_metadata(subtensor, metagraph.netuid, hotkey)
if not metadata:
continue
commitment = metadata["info"]["fields"][0]
hex_data = commitment[list(commitment.keys())[0]][2:]
chain_str = bytes.fromhex(hex_data).decode()
block = metadata["block"]
incentive = metagraph.incentive[uid].nan_to_num().item()
emission = metagraph.emission[uid].nan_to_num().item() * 20 # convert to daily TAO
model_data = None
try:
model_data = ModelData.from_compressed_str(uid, hotkey, chain_str, block, incentive, emission)
except:
continue
result.append(model_data)
return result
def get_sample(uid, history) -> typing.Optional[typing.Tuple[str, str]]:
prompt_key = f"sample_prompt_data.{uid}"
response_key = f"sample_response_data.{uid}"
if prompt_key and response_key in history:
prompt = list(history[prompt_key])[-1]
response = list(history[response_key])[-1]
if isinstance(prompt, str) and isinstance(response, str):
return prompt, response
return None
def next_tempo(start_block, tempo, block):
start_num = start_block + tempo
intervals = (block - start_num) // tempo
nearest_num = start_num + ((intervals + 1) * tempo)
return nearest_num
subtensor, metagraph = get_subtensor_and_metagraph()
tao_price = get_tao_price()
leaderboard_df = get_subnet_data(subtensor, metagraph)
leaderboard_df.sort(key=lambda x: x.incentive, reverse=True)
current_block = metagraph.block.item()
next_update = next_tempo(
SUBNET_START_BLOCK,
subtensor.get_subnet_hyperparameters(NETUID).tempo,
current_block
)
blocks_to_go = next_update - current_block
current_time = datetime.datetime.now()
next_update_time = current_time + datetime.timedelta(seconds=blocks_to_go * SECONDS_PER_BLOCK)
validator_df = get_validator_weights(metagraph)
weight_keys = set()
for uid, stats in validator_df.items():
weight_keys.update(stats[-1].keys())
def get_next_update():
now = datetime.datetime.now()
delta = next_update_time - now
return f"""<div align="center" style="font-size: larger;">Next reward update: <b>{blocks_to_go}</b> blocks (~{int(delta.total_seconds() // 60)} minutes)</div>"""
demo = gr.Blocks(css=".typewriter {font-family: 'JMH Typewriter', sans-serif;}")
with demo:
gr.HTML(FONT)
gr.HTML(TITLE)
gr.HTML(IMAGE)
gr.HTML(HEADER)
gr.HTML(value=get_next_update())
with gr.Tabs():
for competition in COMPETITIONS:
with gr.Tab(competition.name):
gr.Label(
value={ f"{c.namespace}/{c.name} ({c.commit[0:8]}, UID={c.uid}) · ${round(c.emission * tao_price, 2):,}{round(c.emission, 2):,})": c.incentive for c in leaderboard_df if c.incentive and c.competition == competition.id},
num_top_classes=10,
)
with gr.Accordion("Validator Stats"):
validator_table = gr.components.Dataframe(
value=[
[uid, int(validator_df[uid][1]), round(validator_df[uid][0], 4)] + [validator_df[uid][-1].get(c.uid) for c in leaderboard_df if c.incentive and c.competition == competition.id]
for uid, _ in sorted(
zip(validator_df.keys(), [validator_df[x][1] for x in validator_df.keys()]),
key=lambda x: x[1],
reverse=True
)
],
headers=["UID", "Stake (τ)", "V-Trust"] + [f"{c.namespace}/{c.name} ({c.commit[0:8]})" for c in leaderboard_df if c.incentive],
datatype=["number", "number", "number"] + ["number" for c in leaderboard_df if c.incentive],
interactive=False,
visible=True,
)
with gr.Accordion("Validator Stats All"):
validator_table_all = gr.components.Dataframe(
value=[
[uid, int(validator_df[uid][1]), round(validator_df[uid][0], 4)] + [validator_df[uid][-1].get(c.uid) for c in leaderboard_df if c.competition == competition.id]
for uid, _ in sorted(
zip(validator_df.keys(), [validator_df[x][1] for x in validator_df.keys()]),
key=lambda x: x[1],
reverse=True
)
],
headers=["UID", "Stake (τ)", "V-Trust"] + [f"{c.namespace}/{c.name} ({c.commit[0:8]})" for c in leaderboard_df if c.incentive],
datatype=["number", "number", "number"] + ["number" for c in leaderboard_df if c.incentive],
interactive=False,
visible=True,
)
def restart_space():
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=60 * 10) # restart every 10 minutes
scheduler.start()
demo.launch()