import gradio as gr
import bittensor as bt
import typing
from bittensor.extrinsics.serving import get_metadata
from dataclasses import dataclass
import requests
import math
import os
import datetime
import time
from dotenv import load_dotenv
from huggingface_hub import HfApi
from apscheduler.schedulers.background import BackgroundScheduler
from tqdm import tqdm
load_dotenv()
FONT = """"""
TITLE = """
Subnet 6 Leaderboard
"""
IMAGE = """"""
HEADER = """
Subnet 6 is a Bittensor subnet that incentivizes the creation of the best open models by evaluating submissions on a constant stream of newly generated synthetic GPT-4 data. The models with the best head-to-head loss on the evaluation data receive a steady emission of TAO."""
EVALUATION_DETAILS = """Name is the 🤗 Hugging Face model name (click to go to the model card). Rewards / Day are the expected rewards per day for each model. Perplexity is represents the loss on all of the evaluation data for the model as calculated by the validator (lower is better). UID is the Bittensor user id of the submitter. Block is the Bittensor block that the model was submitted in. More stats on taostats."""
EVALUATION_HEADER = """
Shows the latest internal evaluation statistics as calculated by a validator run by Nous Research
"""
H4_TOKEN = os.environ.get("H4_TOKEN", None)
API = HfApi(token=H4_TOKEN)
REPO_ID = "winglian/finetuning_subnet_leaderboard"
METAGRAPH_RETRIES = 10
METAGRAPH_DELAY_SECS = 30
NETUID = 6
SUBNET_START_BLOCK = 2225782
SECONDS_PER_BLOCK = 12
@dataclass
class Competition:
id: str
name: str
COMPETITIONS = [Competition(id="m1", name="mistral-7b"), Competition(id="g1", name="gemma-2b")]
DEFAULT_COMPETITION_ID = "g1"
def get_subtensor_and_metagraph() -> typing.Tuple[bt.subtensor, bt.metagraph]:
for i in range(0, METAGRAPH_RETRIES):
try:
subtensor: bt.subtensor = bt.subtensor("finney")
metagraph: bt.metagraph = subtensor.metagraph(6, lite=False)
return subtensor, metagraph
except:
if i == METAGRAPH_RETRIES - 1:
raise
time.sleep(METAGRAPH_DELAY_SECS)
raise RuntimeError()
@dataclass
class ModelData:
uid: int
hotkey: str
namespace: str
name: str
commit: str
hash: str
block: int
incentive: float
emission: float
competition: str
@classmethod
def from_compressed_str(cls, uid: int, hotkey: str, cs: str, block: int, incentive: float, emission: float):
"""Returns an instance of this class from a compressed string representation"""
tokens = cs.split(":")
return ModelData(
uid=uid,
hotkey=hotkey,
namespace=tokens[0],
name=tokens[1],
commit=tokens[2] if tokens[2] != "None" else None,
hash=tokens[3] if tokens[3] != "None" else None,
competition=tokens[4] if len(tokens) > 4 and tokens[4] != "None" else DEFAULT_COMPETITION_ID,
block=block,
incentive=incentive,
emission=emission
)
def get_tao_price() -> float:
for i in range(0, METAGRAPH_RETRIES):
try:
return float(requests.get("https://api.kucoin.com/api/v1/market/stats?symbol=TAO-USDT").json()["data"]["last"])
except:
if i == METAGRAPH_RETRIES - 1:
raise
time.sleep(METAGRAPH_DELAY_SECS)
raise RuntimeError()
def get_validator_weights(metagraph: bt.metagraph) -> typing.Dict[int, typing.Tuple[float, int, typing.Dict[int, float]]]:
ret = {}
uid_list = metagraph.uids.tolist()
for uid in tqdm(uid_list, desc="get_validator_weights"):
vtrust = metagraph.validator_trust[uid].item()
if vtrust > 0:
ret[uid] = (vtrust, metagraph.S[uid].item(), {})
for ouid in metagraph.uids.tolist():
if ouid == uid:
continue
weight = round(metagraph.weights[uid][ouid].item(), 4)
if weight > 0:
ret[uid][-1][ouid] = weight
return ret
def get_subnet_data(subtensor: bt.subtensor, metagraph: bt.metagraph) -> typing.List[ModelData]:
result = []
uid_list = metagraph.uids.tolist()
for uid in tqdm(uid_list, desc="get_subnet_data"):
hotkey = metagraph.hotkeys[uid]
metadata = get_metadata(subtensor, metagraph.netuid, hotkey)
if not metadata:
continue
commitment = metadata["info"]["fields"][0]
hex_data = commitment[list(commitment.keys())[0]][2:]
chain_str = bytes.fromhex(hex_data).decode()
block = metadata["block"]
incentive = metagraph.incentive[uid].nan_to_num().item()
emission = metagraph.emission[uid].nan_to_num().item() * 20 # convert to daily TAO
model_data = None
try:
model_data = ModelData.from_compressed_str(uid, hotkey, chain_str, block, incentive, emission)
except:
continue
result.append(model_data)
return result
def get_sample(uid, history) -> typing.Optional[typing.Tuple[str, str]]:
prompt_key = f"sample_prompt_data.{uid}"
response_key = f"sample_response_data.{uid}"
if prompt_key and response_key in history:
prompt = list(history[prompt_key])[-1]
response = list(history[response_key])[-1]
if isinstance(prompt, str) and isinstance(response, str):
return prompt, response
return None
def next_tempo(start_block, tempo, block):
start_num = start_block + tempo
intervals = (block - start_num) // tempo
nearest_num = start_num + ((intervals + 1) * tempo)
return nearest_num
subtensor, metagraph = get_subtensor_and_metagraph()
tao_price = get_tao_price()
leaderboard_df = get_subnet_data(subtensor, metagraph)
leaderboard_df.sort(key=lambda x: x.incentive, reverse=True)
current_block = metagraph.block.item()
next_update = next_tempo(
SUBNET_START_BLOCK,
subtensor.get_subnet_hyperparameters(NETUID).tempo,
current_block
)
blocks_to_go = next_update - current_block
current_time = datetime.datetime.now()
next_update_time = current_time + datetime.timedelta(seconds=blocks_to_go * SECONDS_PER_BLOCK)
validator_df = get_validator_weights(metagraph)
weight_keys = set()
for uid, stats in validator_df.items():
weight_keys.update(stats[-1].keys())
def get_next_update():
now = datetime.datetime.now()
delta = next_update_time - now
return f"""
Next reward update: {blocks_to_go} blocks (~{int(delta.total_seconds() // 60)} minutes)
"""
demo = gr.Blocks(css=".typewriter {font-family: 'JMH Typewriter', sans-serif;}")
with demo:
gr.HTML(FONT)
gr.HTML(TITLE)
gr.HTML(IMAGE)
gr.HTML(HEADER)
gr.HTML(value=get_next_update())
with gr.Tabs():
for competition in COMPETITIONS:
with gr.Tab(competition.name):
gr.Label(
value={ f"{c.namespace}/{c.name} ({c.commit[0:8]}, UID={c.uid}) · ${round(c.emission * tao_price, 2):,} (τ{round(c.emission, 2):,})": c.incentive for c in leaderboard_df if c.incentive and c.competition == competition.id},
num_top_classes=10,
)
with gr.Accordion("Validator Stats"):
validator_table = gr.components.Dataframe(
value=[
[uid, int(validator_df[uid][1]), round(validator_df[uid][0], 4)] + [validator_df[uid][-1].get(c.uid) for c in leaderboard_df if c.incentive and c.competition == competition.id]
for uid, _ in sorted(
zip(validator_df.keys(), [validator_df[x][1] for x in validator_df.keys()]),
key=lambda x: x[1],
reverse=True
)
],
headers=["UID", "Stake (Ï„)", "V-Trust"] + [f"{c.namespace}/{c.name} ({c.commit[0:8]})" for c in leaderboard_df if c.incentive],
datatype=["number", "number", "number"] + ["number" for c in leaderboard_df if c.incentive],
interactive=False,
visible=True,
)
with gr.Accordion("Validator Stats All"):
validator_table_all = gr.components.Dataframe(
value=[
[uid, int(validator_df[uid][1]), round(validator_df[uid][0], 4)] + [validator_df[uid][-1].get(c.uid) for c in leaderboard_df if c.competition == competition.id]
for uid, _ in sorted(
zip(validator_df.keys(), [validator_df[x][1] for x in validator_df.keys()]),
key=lambda x: x[1],
reverse=True
)
],
headers=["UID", "Stake (Ï„)", "V-Trust"] + [f"{c.namespace}/{c.name} ({c.commit[0:8]})" for c in leaderboard_df if c.incentive],
datatype=["number", "number", "number"] + ["number" for c in leaderboard_df if c.incentive],
interactive=False,
visible=True,
)
def restart_space():
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=60 * 10) # restart every 10 minutes
scheduler.start()
demo.launch()