Spaces:
Runtime error
Runtime error
from transformers import T5Tokenizer, T5Model, T5ForConditionalGeneration, pipeline | |
import nltk.data | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
nltk.download('punkt') | |
import gradio as gr | |
from gradio.mix import Parallel | |
tokenizer_t5 = T5Tokenizer.from_pretrained("panggi/t5-base-indonesian-summarization-cased") | |
model_t5 = T5ForConditionalGeneration.from_pretrained("panggi/t5-base-indonesian-summarization-cased") | |
pretrained_sentiment = "w11wo/indonesian-roberta-base-sentiment-classifier" | |
pretrained_ner = "cahya/bert-base-indonesian-NER" | |
sentence_tokenizer = nltk.data.load('tokenizers/punkt/english.pickle') | |
sentiment_pipeline = pipeline( | |
"sentiment-analysis", | |
model=pretrained_sentiment, | |
tokenizer=pretrained_sentiment, | |
return_all_scores=True | |
) | |
ner_pipeline = pipeline( | |
"ner", | |
model=pretrained_ner, | |
tokenizer=pretrained_ner, | |
grouped_entities=True | |
) | |
def summ_t5(text): | |
input_ids = tokenizer_t5.encode(text, return_tensors='pt') | |
summary_ids = model_t5.generate(input_ids, | |
max_length=100, | |
num_beams=2, | |
repetition_penalty=2.5, | |
length_penalty=1.0, | |
early_stopping=True, | |
no_repeat_ngram_size=2, | |
use_cache=True) | |
summary_text = tokenizer_t5.decode(summary_ids[0], skip_special_tokens=True) | |
return summary_text | |
def sentiment_analysis(text): | |
output = sentiment_pipeline(text) | |
return {elm["label"]: elm["score"] for elm in output[0]} | |
def ner(text): | |
output = ner_pipeline(text) | |
for elm in output: | |
elm['entity'] = elm['entity_group'] | |
return {"text": text, "entities": output} | |
def sentiment_df(text): | |
df = pd.DataFrame(columns=['Text', 'Label', 'Score']) | |
text_list = sentence_tokenizer.tokenize(text) | |
result = [sentiment_analysis(text) for text in text_list] | |
labels = [] | |
scores = [] | |
for pred in result: | |
idx = list(pred.values()).index(max(list(pred.values()))) | |
labels.append(list(pred.keys())[idx]) | |
scores.append(round(list(pred.values())[idx], 3)) | |
df['Text'] = text_list | |
df['Label'] = labels | |
df['Score'] = scores | |
return df | |
def run(text): | |
summ_ = summ_t5(text) | |
sent_ = sentiment_analysis(summ_) | |
ner_ = ner(summ_) | |
df_ = sentiment_df(text) | |
ner_all = ner(text) | |
fig = plt.figure() | |
df_.groupby(["Label"])["Text"].count().plot.pie(autopct="%.1f%%", figsize=(6,6)) | |
return summ_, sent_, ner_, fig, ner_all, df_ | |
if __name__ == "__main__": | |
with gr.Blocks() as demo: | |
gr.Markdown("""<h1 style="text-align:center">News Analyzer - Indonesia</h1>""") | |
gr.Markdown( | |
""" | |
Creator: Wira Indra Kusuma | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
input_text = gr.Textbox(label="Input Text") | |
analyze_button = gr.Button(label="Analyze") | |
summ_output = gr.Textbox(label="Article Summary") | |
ner_output = gr.HighlightedText(label="NER Summary") | |
sent_output = gr.Label(label="Sentiment Summary") | |
with gr.Column(): | |
plot_component = gr.Plot(label="Pie Chart of Sentiments of Article") | |
ner_all_output = gr.HighlightedText(label="NER Article") | |
dataframe_component = gr.DataFrame(type="pandas", | |
label="Dataframe", | |
max_rows=(20,'fixed'), | |
overflow_row_behaviour='paginate', | |
wrap=True) | |
analyze_button.click(run, inputs=input_text, outputs=[summ_output, sent_output, ner_output, plot_component, ner_all_output, dataframe_component ]) | |
demo.launch() |