wisalkhanmv's picture
Rename main_streamlit.py to app.py
e050d69 verified
import streamlit as st
from twelve_ai_agents.orm import Room
from twelve_ai_agents.agents_dilemmas import AGENTS, DILEMMAS
from twelve_ai_agents.utils import get_client
import time
from itertools import groupby
import pandas as pd
import os
import json
from datetime import datetime
def group_messages_by_round(messages, max_rounds):
"""Group messages by round and format for display"""
rounds = []
current_round = 0
round_messages = []
for msg in messages:
if msg["role"] == "moderator" and len(round_messages) > 0:
rounds.append(round_messages)
round_messages = []
round_messages.append(msg)
if round_messages:
rounds.append(round_messages)
return rounds
def execute_round():
"""Execute a single round of discussion"""
if 'current_agent_index' not in st.session_state:
st.session_state.current_agent_index = 0
# Get the next agent
agent = st.session_state.room.agents[st.session_state.current_agent_index]
# Generate response and display if agent chooses to speak
response = st.session_state.room.generate_agent_response(agent, st.session_state.client)
if response: # Only append and display if agent chose to speak
st.session_state.messages.append(response)
with st.chat_message(response["role"]):
st.markdown(f"**{response['role']}**: {response['message']}")
time.sleep(0.5)
# Increment agent index
st.session_state.current_agent_index += 1
# If all agents have taken their turn in this round
if st.session_state.current_agent_index >= len(st.session_state.room.agents):
st.session_state.current_agent_index = 0
st.session_state.current_round += 1
st.session_state.room.current_round = st.session_state.current_round
# Check if all rounds are complete
if st.session_state.current_round >= st.session_state.max_rounds:
st.session_state.discussion_completed = True
st.success("Discussion rounds completed!")
# Force a rerun to update the UI
st.rerun()
def show_discussion_history():
"""Display the entire discussion history in collapsible rounds"""
rounds = group_messages_by_round(st.session_state.messages, st.session_state.max_rounds)
for i, round_messages in enumerate(rounds):
if i == 0: # First round with moderator introduction
with st.expander("πŸ“Œ Discussion Start", expanded=True):
for msg in round_messages:
with st.chat_message(msg["role"]):
st.markdown(f"**{msg['role']}**: {msg['message']}")
else:
with st.expander(f"Round {i}", expanded=True):
for msg in round_messages:
with st.chat_message(msg["role"]):
st.markdown(f"**{msg['role']}**: {msg['message']}")
def show_summary():
"""Display the final discussion summary"""
with st.expander("πŸ“Š Final Summary", expanded=True):
results = st.session_state.room.finalize_discussion(st.session_state.client)
st.subheader("Majority Decision")
st.write(results["majority_decision"])
if results["consensus_reached"]:
st.success("Full consensus reached! πŸŽ‰")
else:
st.info("Partial consensus reached")
st.subheader("Individual Positions")
# Using st.subheader and st.write (Simplest, no collapsing)
for agent_name, position in results["individual_positions"].items():
st.subheader(agent_name)
st.write(position)
def save_conversation_log():
"""Saves the conversation log to a CSV file."""
results = st.session_state.room.finalize_discussion(st.session_state.client)
log_data = {
"conversation_id": datetime.now().strftime("%Y%m%d%H%M%S"), # Unique ID based on timestamp
"dilemma_name": st.session_state.selected_dilemma["name"], # Store the name
"dilemma_description": st.session_state.selected_dilemma["description"], # Store the description
"room_history": json.dumps(st.session_state.messages), # Store the entire message history as JSON
"final_decision": results["majority_decision"],
"final_consensus": results["consensus_reached"],
"individual_positions": json.dumps(results["individual_positions"]), # Store individual positions
"max_rounds": st.session_state.max_rounds,
"agents": json.dumps([agent.name for agent in st.session_state.room.agents]),
"start_time": st.session_state.start_time,
"end_time": datetime.now().strftime("%Y%m%d%H%M%S"), # end time of the discussion
}
df = pd.DataFrame([log_data])
filepath = "logs/conversations.csv"
if os.path.exists(filepath):
df.to_csv(filepath, mode='a', header=False, index=False) # append to the file if the file exists
else:
df.to_csv(filepath, header=True, index=False) # create the file and write the header
def main():
st.title("AI Agents Social Dilemma Discussion πŸ€–πŸ’¬")
# Initialize session state
if 'messages' not in st.session_state:
st.session_state.messages = []
if 'room' not in st.session_state:
moderator = next((agent for agent in AGENTS if agent.name == "The Moderator"), None)
st.session_state.room = Room(agents=AGENTS, moderator=moderator)
st.session_state.client = get_client()
st.session_state.current_round = 0
st.session_state.max_rounds = 0
st.session_state.discussion_started = False
st.session_state.discussion_completed = False
st.session_state.current_agent_index = 0
st.session_state.selected_dilemma = None # Store the selected dilemma
st.session_state.start_time = None # Store the start time
with st.sidebar:
st.header("Setup Discussion")
# Dilemma selection
selected_dilemma_name = st.selectbox(
"Choose a Social Dilemma",
options=[dilemma["name"] for dilemma in DILEMMAS],
index=0
)
st.session_state.selected_dilemma = next( # Store the selected dilemma dictionary
(dilemma for dilemma in DILEMMAS if dilemma["name"] == selected_dilemma_name),
None
)
dilemma_description = st.session_state.selected_dilemma["description"] if st.session_state.selected_dilemma else ""
dilemma = st.text_area("Dilemma Description", value=dilemma_description, height=200)
# Initial rounds setup
initial_rounds = st.number_input("Initial Number of Rounds", min_value=1, max_value=10, value=5)
start_button = st.button("Start Discussion")
# Continue discussion setup
continue_rounds = st.number_input("Continue Discussion Rounds", min_value=1, max_value=10, value=1) # Moved outside
continue_button = False # Initialize it here
if not st.session_state.discussion_completed:
continue_button = st.button("Continue Discussion") # Assign the Streamlit button here
# Handle start button
if start_button:
moderator = next((agent for agent in AGENTS if agent.name == "The Moderator"), None)
st.session_state.room = Room(agents=AGENTS, moderator=moderator)
st.session_state.client = get_client()
st.session_state.current_round = 0
st.session_state.messages = []
st.session_state.current_agent_index = 0
moderator_intro = st.session_state.room.set_dilemma(dilemma)
initial_message = {
"role": "moderator",
"message": moderator_intro,
"talk_to": "room"
}
st.session_state.messages.append(initial_message)
with st.chat_message("moderator"):
st.markdown(f"**moderator**: {moderator_intro}")
st.session_state.discussion_started = True
st.session_state.max_rounds = initial_rounds
st.session_state.room.max_rounds = initial_rounds
st.session_state.discussion_completed = False
st.session_state.start_time = datetime.now().strftime("%Y%m%d%H%M%S") # Record the start time
# Handle continue button
if st.session_state.discussion_started and not st.session_state.discussion_completed and continue_button:
st.session_state.room.continue_discussion(continue_rounds)
st.session_state.max_rounds = st.session_state.room.max_rounds
st.session_state.current_round = 0
st.session_state.current_agent_index = 0
# Main content area
if st.session_state.discussion_completed:
show_discussion_history()
show_summary()
#**** UNCOMMENT TO SAVE CONVERSATION LOGS ****
# save_conversation_log() # Save the log when the discussion is completed
else:
if st.session_state.discussion_started:
st.write(f"Current Round: {st.session_state.current_round + 1} / {st.session_state.max_rounds}")
# Display message history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(f"**{message['role']}**: {message['message']}")
# Execute next response
if st.session_state.current_round < st.session_state.max_rounds:
execute_round()
if __name__ == "__main__":
main()